1,528 research outputs found

    Predicted and measured performance of two full-scale ducted propellers

    Get PDF
    Predicted and measured performance of two full- scale ducted propellers at angle of attack - analytical model developmen

    Space shuttle nonmetallic materials age life prediction

    Get PDF
    The chemiluminescence from samples of polybutadiene, Viton, Teflon, Silicone, PL 731 Adhesive, and SP 296 Boron-Epoxy composite was measured at temperatures from 25 to 150 C. Excellent correlations were obtained between chemiluminescence and temperature. These correlations serve to validate accelerated aging tests (at elevated temperatures) designed to predict service life at lower temperatures. In most cases, smooth or linear correlations were obtained between chemiluminescence and physical properties of purified polymer gums, including the tensile strength, viscosity, and loss tangent. The latter is a complex function of certain polymer properties. Data were obtained with far greater ease by the chemiluminescence technique than by the conventional methods of study. The chemiluminescence from the Teflon (Halon) samples was discovered to arise from trace amounts of impurities, which were undetectable by conventional, destructive analysis of the sample

    Chemiluminescence Study on Thermal Degradation of Aircraft Tire Elastomers

    Get PDF
    Since the autoxidative process accounts in part for the degradation of rubber, including aircraft tires, it was felt that a study of the chemiluminescence from unsaturated elastomers could contribute significantly to an understanding of the degradation mechanism. The study revealed similarities in chemiluminescence behavior between four elastomers which were investigated, and it shows that similar oxidation mechanisms occur. Oxidative chemiluminescence was observed from purified samples of cis-1,4-polybutadiene, cis-1,4-polyisoprene, trans-polypentenamer, and 1,2-polybutadiene in an oxygen atmosphere at 25-150 C. The elastomer samples were placed in a 600 watt oven which is equipped with gas inlets for introducing any desired atmosphere. Chemiluminescence emission from the samples was focused with a two inch quartz lens onto the detector of a 12" photomultiplier which is connected to a photon counter. A strip-chart recorder, connected to the counter, permitted automatic data collection. Diagrams of the apparatus are included. The chemical reactions which occurred from the thermal decomposition of the polymer samples are described, and results (and tabulated data) are discussed

    Grid Fin Stabilization of the Orion Launch Abort Vehicle

    Get PDF
    Wind tunnel tests were conducted by Nielsen Engineering & Research (NEAR) and Rose Engineering & Research (REAR) in conjunction with the NASA Engineering & Safety Center (NESC) on a 6%-scale model of the Orion launch abort vehicle (LAV) configured with four grid fins mounted near the base of the vehicle. The objectives of these tests were to 1) quantify LAV stability augmentation provided by the grid fins from subsonic through supersonic Mach numbers, 2) assess the benefits of swept grid fins versus unswept grid fins on the LAV, 3) determine the effects of the LAV abort motors on grid fin aerodynamics, and 4) generate an aerodynamic database for use in the future application of grid fins to small length-to-diameter ratio vehicles similar to the LAV. The tests were conducted in NASA Ames Research Center's 11x11-foot transonic wind tunnel from Mach 0.5 through Mach 1.3 and in their 9x7-foot supersonic wind tunnel from Mach 1.6 through Mach 2.5. Force- and moment-coefficient data were collected for the complete vehicle and for each individual grid fin as a function of angle of attack and sideslip angle. Tests were conducted with both swept and unswept grid fins with the simulated abort motors (cold jets) off and on. The swept grid fins were designed with a 22.5deg aft sweep angle for both the frame and the internal lattice so that the frontal projection of the swept fins was the same as for the unswept fins. Data from these tests indicate that both unswept and swept grid fins provide significant improvements in pitch stability as compared to the baseline vehicle over the Mach number range investigated. The swept fins typically provide improved stability as compared to the unswept fins, but the performance gap diminished as Mach number was increased. The aerodynamic performance of the fins was not observed to degrade when the abort motors were turned on. Results from these tests indicate that grid fins can be a robust solution for stabilizing the Orion LAV over a wide range of operating conditions

    A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Get PDF
    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ϵ(overbar) = 0.9985(4)

    Two types of MeV ion beam enhanced adhesion for Au films on SiO_2

    Get PDF
    The ion beam-enhanced adhesion of thin Au films on vitreous silica substrates was studied for a wide range of Cl ion beam doses for beam energies between 6.5 MeV and 21.0 MeV. Since the residual adhesion of Au on SiO_2 is low, the improved adhesion can be easily seen using the Scotch Tape Test. The threshold in the enhanced adhesion corresponding to passing the tape test occurs at two different dose ranges for a given energy; one at very low dose centered around 1 × 10^(13) /cm^2, the other at higher doses with a threshold of around 1.5 × 10^(14) /cm^2 (depending upon the beam energy). At low doses (2 × 10^(12) to 5 × 10^(13) /cm^2) surface cracks occur on the SiO_2 substrates, these cracks close up at doses higher than 5 × 10^(13) /cm^2. A possible explanation of enhanced adhesion in the low dose range is associated with the surface crazing of the SiO_2 substrate. To make the adhesion test more quantitative, a scratch test was also used on the samples

    Precision measurement of the neutron β-decay asymmetry

    Get PDF
    A new measurement of the neutron β-decay asymmetry A_0 has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A_0=−0.11954(55)_(stat)(98)_(syst), corresponding to the ratio of axial-vector to vector coupling λ ≡ g_A/g_V = −1.2756(30)

    Making morbidity multiple: History, legacies, and possibilities for global health

    Get PDF
    Multimorbidity has been framed as a pressing global health challenge that exposes the limits of systems organised around single diseases. This article seeks to expand and strengthen current thinking around multimorbidity by analysing its construction within the field of global health. We suggest that the significance of multimorbidity lies not only in challenging divisions between disease categories but also in what it reveals about the culture and history of transnational biomedicine. Drawing on social research from sub-Saharan Africa to ground our arguments, we begin by describing the historical processes through which morbidity was made divisible in biomedicine and how the single disease became integral not only to disease control but to the extension of biopolitical power. Multimorbidity, we observe, is hoped to challenge single disease approaches but is assembled from the same problematic, historically-loaded categories that it exposes as breaking down. Next, we highlight the consequences of such classificatory legacies in everyday lives and suggest why frameworks and interventions to integrate care have tended to have limited traction in practice. Finally, we argue that efforts to align priorities and disciplines around a standardised biomedical definition of multimorbidity risks retracing the same steps. We call for transdisciplinary work across the field of global health around a more holistic, reflexive understanding of multimorbidity that foregrounds the culture and history of translocated biomedicine, the intractability of single disease thinking, and its often-adverse consequences in local worlds. We outline key domains within the architecture of global health where transformation is needed, including care delivery, medical training, the organisation of knowledge and expertise, global governance, and financing

    Comparison of Measured Dark Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    Get PDF
    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array
    • …
    corecore