388 research outputs found

    Superconducting transport through a vibrating molecule

    Full text link
    Nonequilibrium electronic transport through a molecular level weakly coupled to a single coherent phonon/vibration mode has been studied for superconducting leads. The Keldysh Green function formalism is used to compute the current for the entire bias voltage range. In the subgap regime, Multiple Andreev Reflection (MAR) processes accompanied by phonon emission cause rich structure near the onset of MAR channels, including an even-odd parity effect that can be interpreted in terms of an inelastic MAR ladder picture. Thereby we establish a connection between the Keldysh formalism and the Landauer scattering approach for inelastic MAR.Comment: 5 pages, 5 figures, version contains now more details, accepted by PR

    Transport and Noise Characteristics of Submicron High-Temperature Superconductor Grain-Boundary Junctions

    Full text link
    We have investigated the transport and noise properties of submicron YBCO bicrystal grain-boundary junctions prepared using electron beam lithography. The junctions show an increased conductance for low voltages reminiscent of Josephson junctions having a barrier with high transmissivity. The voltage noise spectra are dominated by a few Lorentzian components. At low temperatures clear two-level random telegraph switching (RTS) signals are observable in the voltage vs time traces. We have investigated the temperature and voltage dependence of individual fluctuators both from statistical analysis of voltage vs time traces and from fits to noise spectra. A transition from tunneling to thermally activated behavior of individual fluctuators was clearly observed. The experimental results support the model of charge carrier traps in the barrier region.Comment: 4 pages, 4 figures, to be published in Appl. Phys. Let

    Field-Effect Transistors on Tetracene Single Crystals

    Full text link
    We report on the fabrication and electrical characterization of field-effect transistors at the surface of tetracene single crystals. We find that the mobility of these transistors reaches the room-temperature value of $0.4 \ cm^2/Vs$. The non-monotonous temperature dependence of the mobility, its weak gate voltage dependence, as well as the sharpness of the subthreshold slope confirm the high quality of single-crystal devices. This is due to the fabrication process that does not substantially affect the crystal quality.Comment: Accepted by Appl. Phys. Lett, tentatively scheduled for publication in the November 24, 2003 issu

    Enhancement of quasiparticle recombination in Ta and Al superconductors by implantation of magnetic and nonmagnetic atoms

    Full text link
    The quasiparticle recombination time in superconducting films, consisting of the standard electron-phonon interaction and a yet to be identified low temperature process, is studied for different densities of magnetic and nonmagnetic atoms. For both Ta and Al, implanted with Mn, Ta and Al, we observe an increase of the recombination rate. We conclude that the enhancement of recombination is not due to the magnetic moment, but arises from an enhancement of disorder.Comment: 4 pages, 4 figure

    Influence of the gate leakage current on the stability of organic single-crystal field-effect transistors

    Full text link
    We investigate the effect of a small leakage current through the gate insulator on the stability of organic single-crystal field-effect transistors (FETs). We find that, irrespective of the specific organic molecule and dielectric used, leakage current flowing through the gate insulator results in an irreversible degradation of the single-crystal FET performance. This degradation occurs even when the leakage current is several orders of magnitude smaller than the source-drain current. The experimental data indicate that a stable operation requires the leakage current to be smaller than $10^{-9} \ \mathrm{A/cm}^2$. Our results also suggest that gate leakage currents may determine the lifetime of thin-film transistors used in applications.Comment: submitted to Appl. Phys. Let

    Energy gap measurement of nanostructured thin aluminium films for use in single Cooper-pair devices

    Full text link
    Within the context of superconducting gap engineering, Al-\alox-Al tunnel junctions have been used to study the variation in superconducting gap, Δ\Delta, with film thickness. Films of thickness 5, 7, 10 and 30 nm were used to form the small area superconductor-insulator-superconductor (SIS) tunnel junctions. In agreement with previous measurements we have observed an increase in the superconducting energy gap of aluminium with a decrease in film thickness. In addition, we find grain size in small area films with thickness \textbf{≥\geq} 10 nm has no appreciable effect on energy gap. Finally, we utilize 7 and 30 nm films in a single Cooper-pair transistor, and observe the modification of the finite bias transport processes due to the engineered gap profile

    Reduced frequency noise in superconducting resonators

    Get PDF
    We report a reduction of the frequency noise in coplanar waveguide superconducting resonators. The reduction of 7 dB is achieved by removing the exposed dielectric substrate surface from the region with high electric fields and by using NbTiN. In a model-analysis the surface of NbTiN is found to be a negligible source of noise, experimentally supported by a comparison with NbTiN on SiOx resonators. The reduction is additive to decreasing the noise by widening the resonators.Comment: 4 pages, 4 figure

    Dynamical Coulomb blockade of multiple Andreev reflections

    Full text link
    We analyze the dynamical Coulomb blockade of multiple Andreev reflections (MAR) in a superconducting quantum point contact coupled to a macroscopic impedance. We find that at very low transmission the blockade scales as n2n^2 with n=Int(2Δ/eV)n = {Int}(2\Delta/eV), where VV is the bias voltage and Δ\Delta is the superconducting gap, as it would correspond to the occurrence of "shots" of charge nene. For higher transmission the blockade is reduced both due to Pauli principle and to elastic renormalization of the MAR probability, and for certain voltage regions it may even become an "antiblockade", i.e. the current is enhanced due to the coupling with the electromagnetic environment.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let
    • …
    corecore