587 research outputs found

    Perturbative analysis of wave interactions in nonlinear systems

    Full text link
    This work proposes a new way for handling obstacles to asymptotic integrability in perturbed nonlinear PDEs within the method of Normal Forms - NF - for the case of multi-wave solutions. Instead of including the whole obstacle in the NF, only its resonant part is included, and the remainder is assigned to the homological equation. This leaves the NF intergable and its solutons retain the character of the solutions of the unperturbed equation. We exploit the freedom in the expansion to construct canonical obstacles which are confined to te interaction region of the waves. Fo soliton solutions, e.g., in the KdV equation, the interaction region is a finite domain around the origin; the canonical obstacles then do not generate secular terms in the homological equation. When the interaction region is infifnite, or semi-infinite, e.g., in wave-front solutions of the Burgers equation, the obstacles may contain resonant terms. The obstacles generate waves of a new type, which cannot be written as functionals of the solutions of the NF. When an obstacle contributes a resonant term to the NF, this leads to a non-standard update of th wave velocity.Comment: 13 pages, including 6 figure

    Dissipative Boussinesq System of Equations in the B\'enard-Marangoni Phenomenon

    Full text link
    By using the long-wave approximation, a system of coupled evolution equations for the bulk velocity and the surface perturbations of a B\'enard-Marangoni system is obtained. It includes nonlinearity, dispersion and dissipation, and it can be interpreted as a dissipative generalization of the usual Boussinesq system of equations. As a particular case, a strictly dissipative version of the Boussinesq system is obtained. Finnaly, some speculations are made on the nature of the physical phenomena described by this system of equations.Comment: 15 Pages, REVTEX (Version 3.0), no figure

    Completely integrable models of non-linear optics

    Full text link
    The models of the non-linear optics in which solitons were appeared are considered. These models are of paramount importance in studies of non-linear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency, and parametric interaction of three waves. At the present time there are a number of the theories based on completely integrable systems of equations, which are both generations of the original known models and new ones. The modified Korteweg-de Vries equation, the non- linear Schrodinger equation, the derivative non-linear Schrodinger equation, Sine-Gordon equation, the reduced Maxwell-Bloch equation, Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are gradually putting together a list of soliton equations, which are usually to be found in non-linear optics theory.Comment: Latex, 17 pages, no figures, submitted to Pramana

    On the (Non)-Integrability of KdV Hierarchy with Self-consistent Sources

    Get PDF
    Non-holonomic deformations of integrable equations of the KdV hierarchy are studied by using the expansions over the so-called "squared solutions" (squared eigenfunctions). Such deformations are equivalent to perturbed models with external (self-consistent) sources. In this regard, the KdV6 equation is viewed as a special perturbation of KdV equation. Applying expansions over the symplectic basis of squared eigenfunctions, the integrability properties of the KdV hierarchy with generic self-consistent sources are analyzed. This allows one to formulate a set of conditions on the perturbation terms that preserve the integrability. The perturbation corrections to the scattering data and to the corresponding action-angle variables are studied. The analysis shows that although many nontrivial solutions of KdV equations with generic self-consistent sources can be obtained by the Inverse Scattering Transform (IST), there are solutions that, in principle, can not be obtained via IST. Examples are considered showing the complete integrability of KdV6 with perturbations that preserve the eigenvalues time-independent. In another type of examples the soliton solutions of the perturbed equations are presented where the perturbed eigenvalue depends explicitly on time. Such equations, however in general, are not completely integrable.Comment: 16 pages, no figures, LaTe

    Second harmonic generation: Goursat problem on the semi-strip and explicit solutions

    Full text link
    A rigorous and complete solution of the initial-boundary-value (Goursat) problem for second harmonic generation (and its matrix analog) on the semi-strip is given in terms of the Weyl functions. A wide class of the explicit solutions and their Weyl functions is obtained also.Comment: 20 page

    Equations of the Camassa-Holm Hierarchy

    Get PDF
    The squared eigenfunctions of the spectral problem associated with the Camassa-Holm (CH) equation represent a complete basis of functions, which helps to describe the inverse scattering transform for the CH hierarchy as a generalized Fourier transform (GFT). All the fundamental properties of the CH equation, such as the integrals of motion, the description of the equations of the whole hierarchy, and their Hamiltonian structures, can be naturally expressed using the completeness relation and the recursion operator, whose eigenfunctions are the squared solutions. Using the GFT, we explicitly describe some members of the CH hierarchy, including integrable deformations for the CH equation. We also show that solutions of some (1+2)(1+2) - dimensional members of the CH hierarchy can be constructed using results for the inverse scattering transform for the CH equation. We give an example of the peakon solution of one such equation.Comment: 10 page

    Quantized representation of some nonlinear integrable evolution equations on the soliton sector

    Full text link
    The Hirota algorithm for solving several integrable nonlinear evolution equations is suggestive of a simple quantized representation of these equations and their soliton solutions over a Fock space of bosons or of fermions. The classical nonlinear wave equation becomes a nonlinear equation for an operator. The solution of this equation is constructed through the operator analog of the Hirota transformation. The classical N-solitons solution is the expectation value of the solution operator in an N-particle state in the Fock space.Comment: 12 page

    Optical Bistability in Nonlinear Optical Coupler with Negative Index Channel

    Full text link
    We discuss a novel kind of nonlinear coupler with one channel filled with a negative index material (NIM). The opposite directionality of the phase velocity and the energy flow in the NIM channel facilitates an effective feedback mechanism that leads to optical bistability and gap soliton formation

    Controlled Generation of Dark Solitons with Phase Imprinting

    Full text link
    The generation of dark solitons in Bose-Einstein condensates with phase imprinting is studied by mapping it into the classic problem of a damped driven pendulum. We provide simple but powerful schemes of designing the phase imprint for various desired outcomes. We derive a formula for the number of dark solitons generated by a given phase step, and also obtain results which explain experimental observations.Comment: 4pages, 4 figure

    Soliton formation from a pulse passing the zero-dispersion point in a nonlinear Schr\"odinger equation

    Full text link
    We consider in detail the self-trapping of a soliton from a wave pulse that passes from a defocussing region into a focussing one in a spatially inhomogeneous nonlinear waveguide, described by a nonlinear Schrodinger equation in which the dispersion coefficient changes its sign from normal to anomalous. The model has direct applications to dispersion-decreasing nonlinear optical fibers, and to natural waveguides for internal waves in the ocean. It is found that, depending on the (conserved) energy and (nonconserved) mass of the initial pulse, four qualitatively different outcomes of the pulse transformation are possible: decay into radiation; self-trapping into a single soliton; formation of a breather; and formation of a pair of counterpropagating solitons. A corresponding chart is drawn on a parametric plane, which demonstrates some unexpected features. In particular, it is found that any kind of soliton(s) (including the breather and counterpropagating pair) eventually decays into pure radiation with the increase of the energy, the initial mass being kept constant. It is also noteworthy that a virtually direct transition from a single soliton into a pair of symmetric counterpropagating ones seems possible. An explanation for these features is proposed. In two cases when analytical approximations apply, viz., a simple perturbation theory for broad initial pulses, or the variational approximation for narrow ones, comparison with the direct simulations shows reasonable agreement.Comment: 18 pages, 10 figures, 1 table. Phys. Rev. E, in pres
    corecore