587 research outputs found
Perturbative analysis of wave interactions in nonlinear systems
This work proposes a new way for handling obstacles to asymptotic
integrability in perturbed nonlinear PDEs within the method of Normal Forms -
NF - for the case of multi-wave solutions. Instead of including the whole
obstacle in the NF, only its resonant part is included, and the remainder is
assigned to the homological equation. This leaves the NF intergable and its
solutons retain the character of the solutions of the unperturbed equation. We
exploit the freedom in the expansion to construct canonical obstacles which are
confined to te interaction region of the waves. Fo soliton solutions, e.g., in
the KdV equation, the interaction region is a finite domain around the origin;
the canonical obstacles then do not generate secular terms in the homological
equation. When the interaction region is infifnite, or semi-infinite, e.g., in
wave-front solutions of the Burgers equation, the obstacles may contain
resonant terms. The obstacles generate waves of a new type, which cannot be
written as functionals of the solutions of the NF. When an obstacle contributes
a resonant term to the NF, this leads to a non-standard update of th wave
velocity.Comment: 13 pages, including 6 figure
Dissipative Boussinesq System of Equations in the B\'enard-Marangoni Phenomenon
By using the long-wave approximation, a system of coupled evolution equations
for the bulk velocity and the surface perturbations of a B\'enard-Marangoni
system is obtained. It includes nonlinearity, dispersion and dissipation, and
it can be interpreted as a dissipative generalization of the usual Boussinesq
system of equations. As a particular case, a strictly dissipative version of
the Boussinesq system is obtained. Finnaly, some speculations are made on the
nature of the physical phenomena described by this system of equations.Comment: 15 Pages, REVTEX (Version 3.0), no figure
Completely integrable models of non-linear optics
The models of the non-linear optics in which solitons were appeared are
considered. These models are of paramount importance in studies of non-linear
wave phenomena. The classical examples of phenomena of this kind are the
self-focusing, self-induced transparency, and parametric interaction of three
waves. At the present time there are a number of the theories based on
completely integrable systems of equations, which are both generations of the
original known models and new ones. The modified Korteweg-de Vries equation,
the non- linear Schrodinger equation, the derivative non-linear Schrodinger
equation, Sine-Gordon equation, the reduced Maxwell-Bloch equation, Hirota
equation, the principal chiral field equations, and the equations of massive
Thirring model are gradually putting together a list of soliton equations,
which are usually to be found in non-linear optics theory.Comment: Latex, 17 pages, no figures, submitted to Pramana
On the (Non)-Integrability of KdV Hierarchy with Self-consistent Sources
Non-holonomic deformations of integrable equations of the KdV hierarchy are
studied by using the expansions over the so-called "squared solutions" (squared
eigenfunctions). Such deformations are equivalent to perturbed models with
external (self-consistent) sources. In this regard, the KdV6 equation is viewed
as a special perturbation of KdV equation. Applying expansions over the
symplectic basis of squared eigenfunctions, the integrability properties of the
KdV hierarchy with generic self-consistent sources are analyzed. This allows
one to formulate a set of conditions on the perturbation terms that preserve
the integrability. The perturbation corrections to the scattering data and to
the corresponding action-angle variables are studied. The analysis shows that
although many nontrivial solutions of KdV equations with generic
self-consistent sources can be obtained by the Inverse Scattering Transform
(IST), there are solutions that, in principle, can not be obtained via IST.
Examples are considered showing the complete integrability of KdV6 with
perturbations that preserve the eigenvalues time-independent. In another type
of examples the soliton solutions of the perturbed equations are presented
where the perturbed eigenvalue depends explicitly on time. Such equations,
however in general, are not completely integrable.Comment: 16 pages, no figures, LaTe
Second harmonic generation: Goursat problem on the semi-strip and explicit solutions
A rigorous and complete solution of the initial-boundary-value (Goursat)
problem for second harmonic generation (and its matrix analog) on the
semi-strip is given in terms of the Weyl functions. A wide class of the
explicit solutions and their Weyl functions is obtained also.Comment: 20 page
Equations of the Camassa-Holm Hierarchy
The squared eigenfunctions of the spectral problem associated with the
Camassa-Holm (CH) equation represent a complete basis of functions, which helps
to describe the inverse scattering transform for the CH hierarchy as a
generalized Fourier transform (GFT). All the fundamental properties of the CH
equation, such as the integrals of motion, the description of the equations of
the whole hierarchy, and their Hamiltonian structures, can be naturally
expressed using the completeness relation and the recursion operator, whose
eigenfunctions are the squared solutions. Using the GFT, we explicitly describe
some members of the CH hierarchy, including integrable deformations for the CH
equation. We also show that solutions of some - dimensional members of
the CH hierarchy can be constructed using results for the inverse scattering
transform for the CH equation. We give an example of the peakon solution of one
such equation.Comment: 10 page
Quantized representation of some nonlinear integrable evolution equations on the soliton sector
The Hirota algorithm for solving several integrable nonlinear evolution
equations is suggestive of a simple quantized representation of these equations
and their soliton solutions over a Fock space of bosons or of fermions. The
classical nonlinear wave equation becomes a nonlinear equation for an operator.
The solution of this equation is constructed through the operator analog of the
Hirota transformation. The classical N-solitons solution is the expectation
value of the solution operator in an N-particle state in the Fock space.Comment: 12 page
Optical Bistability in Nonlinear Optical Coupler with Negative Index Channel
We discuss a novel kind of nonlinear coupler with one channel filled with a
negative index material (NIM). The opposite directionality of the phase
velocity and the energy flow in the NIM channel facilitates an effective
feedback mechanism that leads to optical bistability and gap soliton formation
Controlled Generation of Dark Solitons with Phase Imprinting
The generation of dark solitons in Bose-Einstein condensates with phase
imprinting is studied by mapping it into the classic problem of a damped driven
pendulum. We provide simple but powerful schemes of designing the phase imprint
for various desired outcomes. We derive a formula for the number of dark
solitons generated by a given phase step, and also obtain results which explain
experimental observations.Comment: 4pages, 4 figure
Soliton formation from a pulse passing the zero-dispersion point in a nonlinear Schr\"odinger equation
We consider in detail the self-trapping of a soliton from a wave pulse that
passes from a defocussing region into a focussing one in a spatially
inhomogeneous nonlinear waveguide, described by a nonlinear Schrodinger
equation in which the dispersion coefficient changes its sign from normal to
anomalous. The model has direct applications to dispersion-decreasing nonlinear
optical fibers, and to natural waveguides for internal waves in the ocean. It
is found that, depending on the (conserved) energy and (nonconserved) mass of
the initial pulse, four qualitatively different outcomes of the pulse
transformation are possible: decay into radiation; self-trapping into a single
soliton; formation of a breather; and formation of a pair of counterpropagating
solitons. A corresponding chart is drawn on a parametric plane, which
demonstrates some unexpected features. In particular, it is found that any kind
of soliton(s) (including the breather and counterpropagating pair) eventually
decays into pure radiation with the increase of the energy, the initial mass
being kept constant. It is also noteworthy that a virtually direct transition
from a single soliton into a pair of symmetric counterpropagating ones seems
possible. An explanation for these features is proposed. In two cases when
analytical approximations apply, viz., a simple perturbation theory for broad
initial pulses, or the variational approximation for narrow ones, comparison
with the direct simulations shows reasonable agreement.Comment: 18 pages, 10 figures, 1 table. Phys. Rev. E, in pres
- …