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Equations of the Camassa-Holm Hierarchy

Rossen I. Ivanov 1

Abstract

The squared eigenfunctions of the spectral problem associated with the
CamassaHolm (CH) equation represent a complete basis of functions,
which helps to describe the inverse scattering transform for the CH hi-
erarchy as a generalized Fourier transform (GFT). All the fundamental
properties of the CH equation, such as the integrals of motion, the de-
scription of the equations of the whole hierarchy, and their Hamiltonian
structures, can be naturally expressed using the completeness relation
and the recursion operator, whose eigenfunctions are the squared so-
lutions. Using the GFT, we explicitly describe some members of the
CH hierarchy, including integrable deformations for the CH equation.
We also show that solutions of some (1 + 2) - dimensional members
of the CH hierarchy can be constructed using results for the inverse
scattering transform for the CH equation. We give an example of the
peakon solution of one such equation.

Keywords: Inverse Scattering, Solitons, Peakons, Integrable systems,
Lax Pair

1 Introduction

The Camassa-Holm (CH) equation [1] became famous as a model in the
theory of water waves. It is also known that it describes axially symmetric
waves in a hyperelastic rod [2, 3]. The most prominent representative of
the water-wave equations, the Korteweg-de Vries (KdV) equation does not
describe the wave-braking phenomenon. In addition to the stable soliton so-
lutions, the CH equation, together with another recently derived nonlinear
integrable equation, the Degasperis-Procesi equation, has smooth solutions
that develop singularities in finite time via a process that captures the fea-
tures of the breaking waves: the solution remains bounded, but the slope
becomes unbounded [4]. For the physical relevance of these two equations
as models for the propagation of shallow water waves over a flat bottom
one can consult, for example [5, 6, 7, 8, 9, 10, 11]. More about the physical
applications, modifications and the type of solutions of the CH equation can
also be found in [4, 12, 13, 14, 15, 16, 17, 18, 19, 20].

The CH equation has the form

ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx = 0, (1)
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where ω is a real constant. This equation is completely integrable and admits
a Lax pair [1]

Ψxx =
(1

4
+ λ(m + ω)

)

Ψ, (2)

Ψt =
( 1

2λ
− u

)

Ψx +
ux

2
Ψ + γΨ, (3)

where γ is an arbitrary constant and m = u − uxx. The CH solitary waves
are stable solitons if ω > 0 [6, 12, 13, 21] or peakons if ω = 0 [1, 22, 23].

The KdV and CH equations can also be interpreted as geodesic flow
equations for the respective L2 and H1 metrics on the Bott-Virasoro group
[24, 25, 26, 27, 28, 29].

The CH equation is a bi-Hamiltonian equation, i.e. it admits two com-
patible hamiltonian structures J1 = (2ω∂ + m∂ + ∂m), J2 = ∂ − ∂3 [1, 30]:

mt = −J2
δH2[m]

δm
= −J1

δH1[m]

δm
, (4)

H1 =
1

2

∫

mudx, (5)

H2 =
1

2

∫

(u3 + uu2
x + 2ωu2)dx. (6)

The infinite sequence of conservation laws (multi-Hamiltonian structure)
Hn[m], n = 0,±1,±2, . . ., satisfying

J2
δHn[m]

δm
= J1

δHn−1[m]

δm
(7)

can be computed explicitly [1, 31, 32, 33, 34].

2 Generalized Fourier transform

The so-called recursion operator plays an important role in describing an
integrable hierarchy . The recursion operator for the CH hierarchy is L =
J−1

2 J1. The eigenfunctions of the recursion operator are the squared eigen-
functions of the CH spectral problem. For simplicity we consider the con-
crete case where m is a Schwartz class function, ω > 0 and m(x, 0) + ω > 0.
Then m(x, t)+ω > 0 for all t, e.g. see [35, 15]. It is convenient to introduce
the notation: q ≡ m + ω. Let k2 = −1

4 − λω, i.e.

λ(k) = − 1

ω

(

k2 +
1

4

)

. (8)

A basis in the space of solutions of (2) can be introduced: f+(x, k) and
f̄+(x, k̄). For all real k 6= 0 it is fixed by its asymptotic when x → ∞ [35],
(also see [32, 36, 37]):

lim
x→∞

e−ikxf+(x, k) = 1, (9)
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We can introduce another basis, f−(x, k) andf̄−(x, k̄) fixed by its asymptotic
when x → −∞ for all real k 6= 0:

lim
x→−∞

eikxf−(x, k) = 1, (10)

Because m(x) and ω are real we find that if f+(x, k) and f−(x, k) are solu-
tions of (2) then

f̄+(x, k̄) = f+(x,−k), and f̄−(x, k̄) = f−(x,−k), (11)

are also solutions of (2). The squared solutions are

F±(x, k) ≡ (f±(x, k))2, F±
n (x) ≡ F (x, iκn), (12)

where F±
n (x) are related to the discrete spectrum k = iκn, where 0 < κ1 <

. . . < κn < 1/2.
Using the asymptotics (9), (10) and the Lax equation (2) one can show that

L±F±(x, k) =
1

λ
F±(x, k). (13)

where

L± = (∂2 − 1)−1
[

4q(x) − 2

∫ x

±∞
dx̃m′(x̃)

]

(14)

is the recursion operator. The inverse of this operator is also well defined.
We introduce the notation ∂−1

± ≡
∫ x
±∞ dx̃. The squared solutions (12)

form a complete basis in the space of the Schwartz class functions m(x), and
y, t, can be treated as some additional parameters. Also, the Generalised
Fourier Transform (GFT) for q and its variation over this basis is [34]

√

ω

q(x)
− 1 = ± 1

2πi

∫ ∞

−∞

2kR±(k)

ωλ(k)
F±(x, k)dk +

N
∑

n=1

2κn

ωλn
R±

n F±
n (x), (15)

∂−1
± δ(

√
q)

√
q

=
1

2πi

∫ ∞

−∞

iδR±(k)

ωλ(k)
F±(x, k)dk

±
N

∑

n=1

[δR±
n − R±

n δλn

ωλn
F±

n (x) +
R±

n

iωλn
δκnF̃±

n (x)
]

, (16)

where F̃±
n (x) ≡ ∂

∂kF±(x, k)|k=iκn
. The generalized Fourier coefficients R±(k),

R±
n , together with the set of discrete eigenvalues, are called scattering data.

The variation is with respect to any additional parameter, e.g. y, t.
The equations of the CH Hierarchy can be written as

P2(L±)
2∂−1

± (
√

q)t√
q

+ P1(L±)
(

√

ω

q
− 1

)

= 0, (17)
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where P1(z) and P2(z) are two polynomials. If Ω(z) = P1(z)
P2(z) is a ratio of

these two polynomials one can define Ω(L±) ≡ P1(L±)P−1
2 (L±) (provided

P2(L±) is an invertible operator). Then (17) can be written in the equivalent
form

qt + 2qũx + qxũ = 0, ũ =
1

2
Ω(L±)

(

√

ω

q
− 1

)

. (18)

Due to the completeness of the squared eigenfunctions basis, from (17),
(15) and (16) we obtain linear differential equations for the scattering data:

R±
t ∓ ikΩ(λ−1)R±(k) = 0, (19)

R±
n,t ± κnΩ(λ−1

n )R±
n = 0, (20)

λn,t = 0. (21)

The GFT for other integrable systems is derived e.g. in [38, 39, 40, 41,
42, 43].

Example: We now consider the case Ω(z) = a−1z
−1 + a0 + a1z (where

aj are constants). The (17) equation can then be rewritten as

L±
2∂−1

± (
√

q)t√
q

+ (a−1 + a0L± + a1L
2
±)

(

√

ω

q
− 1

)

= 0, (22)

Taking the identities

L±
2∂−1

± (
√

q)t√
q

= −4∂−1
± ut,

1

2
L±

(

√

ω

q
− 1

)

= u,

L±u = −2(1 − ∂2)−1∂−1
± (uqx + 2qux)

into account, we obtain an integrable equation

qt + a1(2qux + qxu) − a0

2
qx − a−1

4
(∂ − ∂3)

√

ω

q
= 0, (23)

which becomes the Camassa-Holm equation (1) with the choice a1 = 1,
a0 = a−1 = 0. Therefore, (23) can be considered as an integrable ’deformed’
version of the CH equation. Another choice for the constants, a−1 = 1,
a0 = a1 = 0, leads to the extended Dym equation [1, 34, 44]. If a1 = 1,
a−1 = 0 but a0 6= 0 the equation is usually called Dullin-Gottwald-Holm
Equation [7, 8, 18, 19].

The Hamiltonian of (18) with respect to the Poisson bracket related to
the Hamiltonian operator J1,

{A,B} = −
∫

(ω + m)
( δA

δm
∂

δB

δm
− δB

δm
∂

δA

δm

)

dx, (24)
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is (see [36])

HΩ =

∫ ∞

0

k2Ω(λ−1)

πωλ(k)2
ln

(

1 −R±(k)R±(−k)
)

dk − 2

ω

N
∑

n=1

∫

κ2
n

λ2
n

Ω(λ−1
n )dκn.(25)

In (25) the Hamiltonian is given in terms of the Scattering data. In
general, it is not straightforward to find the corresponding expressions in
terms of the field variable q(x) (or m(x)). For example, the Hamiltonian of
(23) with respect to (24) is

HΩ = a1H
CH
1 − a0

2
I0 −

a−1

4
HCH

−1 ,

where HCH
1 = 1

2

∫ ∞
−∞ mudx is the first CH Hamiltonian (5),

HCH
−1 =

1

2

∫ ∞

−∞

[(

4

√

ω

q
− 4

√

q

ω

)2
+

√
ωq2

x

4q5/2

]

dx, (26)

is the (-1)-st Hamiltonian for the CH equation, and the integral

I0 =

∫ ∞

−∞
mdx = HCH

0 + 2ωα, (27)

is related to the other two CH integrals [34]

HCH
0 =

∫ ∞

−∞
(
√

q −
√

ω)2dx, α =

∫ ∞

−∞

(

√

ω

q
− 1

)

dx.

3 Peakon solutions of a (1+2) - dimensional equa-
tion from the CH hierarchy

We consider an integrable member of the CH hierarchy with two ’time’
variables - t and y (cf. [45])

qt + 2(Uxy + ηUxx)q + (Uy + ηUx + γ)qx = 0, q = Ux − Uxxx + ω, (28)

where ω, γ and η are arbitrary constants. The Lax pair for (28) is

Ψxx =
(1

4
+ λ(m + ω)

)

Ψ,

(

∂t −
1

2λ
∂y

)

Ψ = −
(

Uy + ηUx + γ − η

2λ

)

Ψx +
1

2
(Uxy + ηUxx)Ψ.

The Lax pair represents a non-isospectral problem. Indeed, the equation
(28) can be written as a compatibility condition

(

∂t −
1

2λ
∂y

)

(Ψxx) = ∂2
x

(

∂t −
1

2λ
∂y

)

Ψ,

5



where λ satisfies the relaxed condition λt − 1
2λλy = 0. But we assume that

the spectrum is t- and y-independent in what follows, and we can generalise
the solutions obtained for the CH equation.
We can also write (28) as

(
√

q)t + [(Uy + ηUx + γ)
√

q]x = 0. (29)

Then

∂−1
± (

√
q)t + (Uy + ηUx + γ)

√
q + β = 0, (30)

where β is an integration constant. Further, choosing β = −γ
√

ω and using
the identities

Uy = −1

2
L±

(∂−1
± (

√
q)y√

q

)

, Ux =
1

2
L±

(

√

ω

q
− 1

)

(31)

we can write (28) in the form

∂−1
± (

√
q)t√

q
− 1

2
L±

(∂−1
± (

√
q)y√

q

)

+
(η

2
L± − γ

)(

√

ω

q
− 1

)

= 0. (32)

Taking (32), (15) and (16) into account and considering variations with
respect to y and t we obtain linear equations for the scattering data:

R±
t − 1

2λ
R±

y ± 2ik
(

γ − η

2λ

)

R± = 0, (33)

R±
n,t −

1

2λn
R±

n,y ∓ 2
(

γ − η

2λn

)

κnR±
n = 0, (34)

assuming λn,t = 0. For example, if γ = η = 0, then the solution is any
function of t + 2λy (with appropriate decaying properties):

R±(y, t) = R±(t + 2λy), R±
n (y, t) = R±

n (t + 2λny). (35)

We can obtain CH equation itself (1) for x = y, u = Ux, γ = η = 0.
We demonstrate how to write explicit peakon solutions for this equation

(γ = η = ω = 0). Until now, ω was strictly positive in our considerations,
but we can take the limit ω → 0 [46] which produces ’peaked’ solitons and
the equations for the scattering data should also hold in this case. We assume
that xk = xk(t, y), pk = pk(t, y) and introduce the notations ε(x) ≡ sign(x),
p′k(t, y) = ∂pk

∂y etc. The ansatz that produces the N -peakon solution for the
CH equation can be generalised as

q(x; t, y) =
N

∑

k=1

pkδ(x − xk).

6



We hence obtain

U(x; t, y) =
1

2

N
∑

k=1

pkε(x − xk)(1 − e−|x−xk|),

Uy(x; t, y) =
1

2

N
∑

k=1

[p′kε(x − xk)(1 − e−|x−xk|) − pke
−|x−xk|x′

k],

Uxy(x; t, y) =
1

2

N
∑

k=1

[p′ke
−|x−xk| + pkε(x − xk)e

−|x−xk|x′
k].

Using this ansatz and the identity

f(x)δ′(x − x0) = f(x0)δ
′(x − x0) − f ′(x0)δ(x − x0)

we obtain the following system of PDEs for the quantities xk(t, y), pk(t, y)
from (28):

ẋl =
1

2

N
∑

k=1

[p′kε(xl − xk)(1 − e−|xl−xk|) − pke
−|xl−xk|x′

k], (36)

ṗl = −1

2
pl

N
∑

k=1

[p′ke
−|xl−xk| + pkε(xl − xk)e

−|xl−xk|x′
k], (37)

where ẋk(t, y) = ∂xk

∂t etc. The solutions of this system can be obtained from
the N -peakon solution for the CH equation [22, 23], where the scattering
data are now arbitrary functions of their argument (with appropriate de-
caying properties): Rn ≡ R+

n (t + 2λny). For example, if N = 1, then the
system has the form

ẋ1 +
1

2
p1x

′
1 = 0, ṗ1 +

1

2
p1p

′
1 = 0,

with a solution p1 = − 1
λ1

= const, x1 = ln R1(t + 2λ1y), cf. [22, 23]. The
system for N = 2 peakons is (we assume that x1 < x2 for all y and t, i.e.
the case for which the N -peakon solution for the CH equation is obtained
in [22, 23])

ẋ1 =
1

2
[−p′2(1 − e−|x1−x2|) − p1x

′
1 − p2e

−|x1−x2|x′
2], (38)

ẋ2 =
1

2
[p′1(1 − e−|x1−x2|) − p1e

−|x1−x2|x′
1 − p2x

′
2], (39)

ṗ1 = −1

2
p1[p

′
1 + p′2e

−|x1−x2| − p2e
−|x1−x2|x′

2], (40)

ṗ2 = −1

2
p2[p

′
1e

−|x1−x2| + p′2 + p1e
−|x1−x2|x′

1], (41)

7



with solutions [22, 23]

p1 = − λ2
1R1 + λ2

2R2

λ1λ2(λ1R1 + λ2R2)
, p2 = − R1 + R2

λ1R1 + λ2R2

x1 = ln
(λ1 − λ2)

2R1R2

λ2
1R1 + λ2

2R2
, x2 = ln(R1 + R2),

where Rk = Rk(t + 2λky) (this can be easily verified). We note that the
total momentum p1 + p2 = −λ1+λ2

λ1λ2
is conserved. Of course, in general,

for an arbitrary N , the N -peakon solution for the CH equation obtained
in [22, 23] can be used because the inverse scattering method for hierarchy
(18) is the same as for the CH equation [34, 36]. The only difference is the
time dependence of the scattering data (and/or the additional y-dependence,
etc.). In this example, y has the meaning of a second ’time’ variable. Clearly,
the conserved quantities in terms of xk and pk have the same form as those
for the CH peakons and can be expressed in terms of the quantities λk, which
we already assumed to be independent of y and t. But the Hamiltonian
formulation is problematic because formally Ω(z) ≡ 0 for the peakon solution
and the Hamiltonian with respect to (24) is degenerate because of (25).
Moreover, the right-hand side of system (38) – (41) involves not only the
quantities xk and pk but also their y-derivatives.

The explicit dependence on the scattering data given in [36] can be used
in the same way for the N -soliton solutions of the CH hierarchy. The sit-
uation where the initial data condition q(x, 0) ≡ m(x, 0) + ω > 0 does not
hold is more complicated and requires a separate analysis [4, 35, 47].
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