4,867 research outputs found

    Nanocrystal seeding: A low temperature route to polycrystalline Si films

    Get PDF
    A novel method is presented for growth of polycrystalline silicon films on amorphous substrates at temperatures of 540–575 °C. Grain nucleation and grain growth are performed in two steps, using Si nanocrystals as nuclei ("seeds"). The nanocrystal seeds are produced by excimer laser photolysis of disilane in a room temperature flow cell. Film (grain) growth occurs epitaxially on the seeds in a separate thermal chemical vapor deposition (CVD) step, with growth rates 10–100 times higher than similar CVD growth rates on crystal Si. Grain size and CVD growth rates are dependent on seed coverage, for seed coverage <0.2 monolayers

    Coleman-Weinberg mechanism in a three-dimensional supersymmetric Chern-Simons-matter model

    Get PDF
    Using the superfield formalism, we study the dynamical breaking of gauge symmetry in the N=1 three-dimensional supersymmetric Chern-Simons model, coupled to a complex scalar superfield with a quartic self-coupling. This is an analogue of the conformally invariant Coleman-Weinberg model in four spacetime dimensions. We show that a mass for the gauge and matter superfields are dynamically generated after two-loop corrections to the effective superpotential. We also discuss the N=2 extension of our work, showing that the Coleman-Weinberg mechanism in such model is not feasible, because it is incompatible with perturbation theory.Comment: 14 pages, 2 figures. Minor corrections, references added. Journal versio

    Gauging N=2 Supersymmetric Non-Linear σ\sigma-Models in the Atiyah-Ward Space-Time

    Full text link
    We build up a class of N=2 supersymmetric non-linear σ\sigma-models in an N=1 superspace based on the Atiyah-Ward space-time of (2+2)-signature metric. We also discuss the gauging of isometries of the associated hyper-K\"ahlerian target spaces and present the resulting gauge-covariant supersymmetric action functional.Comment: 12 pages, latex, no figure

    On the Inconsistency of Fayet-Iliopoulos Terms in Supergravity Theories

    Full text link
    Motivated by recent discussions, we revisit the issue of whether globally supersymmetric theories with non-zero Fayet-Iliopoulos terms may be consistently coupled to supergravity. In particular, we examine claims that a fundamental inconsistency arises due to the conflicting requirements which are imposed on the RR-symmetry properties of the theory by the supergravity framework. We also prove that certain kinds of Fayet-Iliopoulos contributions to the supercurrent supermultiplets of theories with non-zero Fayet-Iliopoulos terms fail to exist. A key feature of our discussion is an explicit comparison between results from the chiral (or ``old minimal'') and linear (or ``new minimal'') formulations of supergravity, and the effects within each of these formalisms that are induced by the presence of non-zero Fayet-Iliopoulos terms.Comment: Comments: 69 pages, LaTeX, 2 figures, 7 tables. Significant new material on conformal-compensator formalisms added, previous results clarified and extended, references adde

    Comprehensive airborne characterization of aerosol from a major bovine source

    Get PDF
    We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California) on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM_(1.0) levels and concentrations of organics. nitrate. and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56-64%), followed either by sulfate or nitrate. and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS) and via mass spectral inarkers in the Aerodvne C-ToF-AMS. Amines were found to be a significant atmospheric base even in the presence of arnmonia; particulate amine concentrations are estimated as at least 14-23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. The likelihood of suppressed droplet growth owing to kinetic limitations from hydrophobic organic material is explored. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN) increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR) mixing rule. Representative values for a parameterization treating particle water uptake in both the sub- and supersaturated regimes are reported for incorporation into atmospheric models

    Self-Dual N=8 Supergravity as Closed N=2(4) Strings

    Full text link
    As open N=2 or 4 strings describe self-dual N=4 super Yang-Mills in 2+2 dimensions, the corresponding closed (heterotic) strings describe self-dual ungauged (gauged) N=8 supergravity. These theories are conveniently formulated in a chiral superspace with general supercoordinate and local OSp(8|2) gauge invariances. The super-light-cone and covariant-component actions are analyzed. Because only half the Lorentz group is gauged, the gravity field equation is just the vanishing of the torsion.Comment: 17 pg., (uuencoded dvi file; revision: forgot 1 stupid term in the last equation) ITP-SB-92-3

    Space-Time Supersymmetry of Extended Fermionic Strings in 2+22 + 2 Dimensions

    Full text link
    The N=2N=2 fermionic string theory is revisited in light of its recently proposed equivalence to the non-compact N=4N=4 fermionic string model. The issues of space-time Lorentz covariance and supersymmetry for the BRST quantized N=2N=2 strings living in uncompactified 2+22 + 2 dimensions are discussed. The equivalent local quantum supersymmetric field theory appears to be the most transparent way to represent the space-time symmetries of the extended fermionic strings and their interactions. Our considerations support the Siegel's ideas about the presence of SO(2,2)SO(2,2) Lorentz symmetry as well as at least one self-dual space-time supersymmetry in the theory of the N=2(4)N=2(4) fermionic strings, though we do not have a compelling reason to argue about the necessity of the {\it maximal} space-time supersymmetry. The world-sheet arguments about the absence of all string massive modes in the physical spectrum, and the vanishing of all string-loop amplitudes in the Polyakov approach, are given on the basis of general consistency of the theory.Comment: 29 pages, LaTeX, ITP-UH-1/9

    Extending the DAMA annual-modulation region by inclusion of the uncertainties in the astrophysical velocities

    Get PDF
    The original annual-modulation region, singled out by the DAMA/NaI experiment for direct detection of WIMPs, is extended by taking into account the uncertainties in the galactic astrophysical velocities. Also the effect due to a possible bulk rotation for the dark matter halo is considered. We find that the range for the WIMP mass becomes 30 GeV < m_chi < 130 GeV at 1-sigma C.L. with a further extension in the upper bound, when a possible bulk rotation of the dark matter halo is taken into account. We show that the DAMA results, when interpreted in the framework of the Minimal Supersymmetric extension of the Standard Model, are consistent with a relic neutralino as a dominant component of cold dark matter (on the average in our universe and in our galactic halo). It is also discussed the discovery potential for the relevant supersymmetric configurations at accelerators of present generation.Comment: ReVTeX, 12 pages, 1 table, 7 figure

    Parity Conservation in Supersymmetric Vector-Like Theories

    Get PDF
    We show that parity is conserved in vector-like supersymmetric theories, such as supersymmetric QCD with massive quarks with no cubic couplings among chiral multiplets, based on fermionic path-integrals, originally developed by Vafa and Witten. We also look into the effect of supersymmetric breaking through gluino masses, and see that the parity-conservation is intact also in this case. Our conclusion is valid, when only bosonic parity-breaking observable terms are considered in path-integrals like the original Vafa-Witten formulation.Comment: 14 pages, latex, no figures; replaced with corrections of exponent in old eq.(2.8), misleading expressions in (3.19), comments on fermionic parity-breaking terms, and some references adde

    Quantum cosmology in the models of 2d and 4d dilatonic supergravity with WZ matter

    Get PDF
    We consider N=1 two-dimensional (2d) dilatonic supergravity (SG), 2d dilatonic SG obtained by dimensional reduction from N=1 four-dimensional (4d) SG, N=2 2d dilatonic SG and string-inspired 4d dilatonic SG. For all the theories, the corresponding action on a bosonic background is constructed and the interaction with NN (dilatonic) Wess-Zumino (WZ) multiplets is presented. Working in the large-N approximation, it is enough to consider the trace anomaly induced effective action due to dilaton-coupled conformal matter as a quantum correction (for 2d models s-waves approximation is additionally used). The equations of motion for all such models with quantum corrections are written in a form convenient for numerical analysis. Their solutions are numerically investigated for 2d and 4d Friedmann-Robertson-Walker (FRW) or 4d Kantowski-Sacks Universes with a time-dependent dilaton via exponential dilaton coupling. The evolution of the corresponding quantum cosmological models is given for different choices of initial conditions and theory parameters. In most cases we find quantum singular Universes. Nevertheless, there are examples of Universe non-singular at early times. Hence, it looks unlikely that quantum matter back reaction on dilatonic background (at least in large NN approximation) may really help to solve the singularity problem.Comment: LaTeX file of the text (36 pages) and 3 ps files of 14 figures, few misprints are corrected and references adde
    • …
    corecore