211 research outputs found

    Topological quantum computation away from the ground state with Majorana fermions

    Get PDF
    We relax one of the requirements for topological quantum computation with Majorana fermions. Topological quantum computation was discussed so far as manipulation of the wave function within degenerate many body ground state. The simplest particles providing degenerate ground state, Majorana fermions, often coexist with extremely low energy excitations, so keeping the system in the ground state may be hard. We show that the topological protection extends to the excited states, as long as the Majorana fermions do not interact neither directly, nor via the excited states. This protection relies on the fermion parity conservation, and so it is generic to any implementation of Majorana fermions.Comment: 3 pages, published versio

    Robustness of edge states in graphene quantum dots

    Get PDF
    We analyze the single particle states at the edges of disordered graphene quantum dots. We show that generic graphene quantum dots support a number of edge states proportional to circumference of the dot over the lattice constant. Our analytical theory agrees well with numerical simulations. Perturbations breaking electron-hole symmetry like next-nearest neighbor hopping or edge impurities shift the edge states away from zero energy but do not change their total amount. We discuss the possibility of detecting the edge states in an antidot array and provide an upper bound on the magnetic moment of a graphene dot.Comment: Added figure 6, extended discussion (version as accepted by Physical Review B

    Detection of valley polarization in graphene by a superconducting contact

    Get PDF
    Because the valleys in the band structure of graphene are related by time-reversal symmetry, electrons from one valley are reflected as holes from the other valley at the junction with a superconductor. We show how this Andreev reflection can be used to detect the valley polarization of edge states produced by a magnetic field. In the absence of intervalley relaxation, the conductance G_NS=2(e^2/h)(1-cos(Theta)) of the junction on the lowest quantum Hall plateau is entirely determined by the angle Theta between the valley isospins of the edge states approaching and leaving the superconductor. If the superconductor covers a single edge, Theta=0 and no current can enter the superconductor. A measurement of G_NS then determines the intervalley relaxation time.Comment: 4 pages, 4 figure

    Single fermion manipulation via superconducting phase differences in multiterminal Josephson junctions

    Get PDF
    We show how the superconducting phase difference in a Josephson junction may be used to split the Kramers degeneracy of its energy levels and to remove all the properties associated with time reversal symmetry. The superconducting phase difference is known to be ineffective in two-terminal short Josephson junctions, where irrespective of the junction structure the induced Kramers degeneracy splitting is suppressed and the ground state fermion parity must stay even, so that a protected zero-energy Andreev level crossing may never appear. Our main result is that these limitations can be completely avoided by using multi-terminal Josephson junctions. There the Kramers degeneracy breaking becomes comparable to the superconducting gap, and applying phase differences may cause the change of the ground state fermion parity from even to odd. We prove that the necessary condition for the appearance of a fermion parity switch is the presence of a "discrete vortex" in the junction: the situation when the phases of the superconducting leads wind by 2Ï€2\pi. Our approach offers new strategies for creation of Majorana bound states as well as spin manipulation. Our proposal can be implemented using any low density, high spin-orbit material such as InAs quantum wells, and can be detected using standard tools.Comment: Source code available as ancillary files. 10 pages, 7 figures. v2: minor changes, published versio

    Majorana-based fermionic quantum computation

    Get PDF
    Because Majorana zero modes store quantum information non-locally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majoranas to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majoranas for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, and the simulation of Trotterized Hubbard Hamiltonian in O(1)\mathcal{O}(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.Comment: 4 pages + 4 page appendix, 4 figures, 2 table

    Andreev rectifier: a nonlocal conductance signature of topological phase transitions

    Full text link
    The proximity effect in hybrid superconductor-semiconductor structures, crucial for realizing Majorana edge modes, is complicated to control due to its dependence on many unknown microscopic parameters. In addition, defects can spoil the induced superconductivity locally in the proximitised system which complicates measuring global properties with a local probe. We show how to use the nonlocal conductance between two spatially separated leads to probe three global properties of a proximitised system: the bulk superconducting gap, the induced gap, and the induced coherence length. Unlike local conductance spectroscopy, nonlocal conductance measurements distinguish between non-topological zero-energy modes localized around potential inhomogeneities, and true Majorana edge modes that emerge in the topological phase. In addition, we find that the nonlocal conductance is an odd function of bias at the topological phase transition, acting as a current rectifier in the low-bias limit. More generally, we identify conditions for crossed Andreev reflection to dominate the nonlocal conductance and show how to design a Cooper pair splitter in the open regime.Comment: 11 pages, 13 figure

    Probing Neutral Majorana Fermion Edge Modes with Charge Transport

    Get PDF
    We propose two experiments to probe the Majorana fermion edge states that occur at a junction between a superconductor and a magnet deposited on the surface of a topological insulator. Combining two Majorana fermions into a single Dirac fermion on a magnetic domain wall allows the neutral Majorana fermions to be probed with charge transport. We will discuss a novel interferometer for Majorana fermions, which probes their Z_2 phase. This setup also allows the transmission of neutral Majorana fermions through a point contact to be measured. We introduce a point contact formed by a superconducting junction and show that its transmission can be controlled by the phase difference across the junction. We discuss the feasibility of these experiments using the recently discovered topological insulator Bi_2 Se_3.Comment: 4 page

    Braiding of non-Abelian anyons using pairwise interactions

    Get PDF
    The common approach to topological quantum computation is to implement quantum gates by adiabatically moving non-Abelian anyons around each other. Here we present an alternative perspective based on the possibility of realizing the exchange (braiding) operators of anyons by adiabatically varying pairwise interactions between them rather than their positions. We analyze a system composed by four anyons whose couplings define a T-junction and we show that the braiding operator of two of them can be obtained through a particular adiabatic cycle in the space of the coupling parameters. We also discuss how to couple this scheme with anyonic chains in order to recover the topological protection.Comment: 8 pages, 7 figures. Errors corrected, clarifications and comments adde
    • …
    corecore