63 research outputs found

    Quantum Group Covariance and the Braided Structure of Deformed Oscillators

    Full text link
    The connection between braided Hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. In this context we provide deformations of the Hopf algebra of functions on SU(1,1). Quantum subgroups and their representations are also discussed.Comment: 12 pages, to be published in JM

    Braided Oscillators

    Full text link
    The braided Hopf algebra structure of the generalized oscillator is investigated. Using the solutions two types of braided Fibonacci oscillators are introduced. This leads to two types of braided Biedenharn-Macfarlane oscillators.Comment: 12 pages, latex, some references added, published versio

    Bardeen spacetime as a quantum corrected Schwarzschild black hole: Quasinormal modes and Hawking radiation

    Full text link
    The Bardeen black hole holds historical significance as the first model of a regular black hole. Recently, there have been proposed interpretations of the Bardeen spacetime as quantum corrections to the Schwarzschild solution. Our study focuses on investigating the quasinormal modes and Hawking radiation of the Bardeen black hole. We have observed that previous studies on the quasinormal modes for the Bardeen black hole suffer from inaccuracies that cannot be neglected. Therefore, we propose accurate calculations of the quasinormal modes for scalar, electromagnetic, and neutrino fields in the Bardeen spacetime. Additionally, we have computed the grey-body factors and analyzed the emission rates of Hawking radiation. Even when the quantum correction is small and the fundamental mode only slightly differs from its Schwarzschild value, the first several overtones deviate at an increasingly stronger rate. This deviation leads to the appearance of overtones with very small real oscillation frequencies. This outburst of overtones is closely linked to the fact that the quantum-corrected black hole differs from its classical limit primarily near the event horizon. Moreover, the intensity of the Hawking radiation is significantly suppressed (up to three orders of magnitude) by the quantum correction.Comment: 12 pages, 9 figure

    General Relativistic Thermoelectric Effects in Superconductors

    Get PDF
    We discuss the general-relativistic contributions to occur in the electromagnetic properties of a superconductor with a heat flow. The appearance of general-relativistic contribution to the magnetic flux through a superconducting thermoelectric bimetallic circuit is shown. A response of the Josephson junctions to a heat flow is investigated in the general-relativistic framework. Some gravitothermoelectric effects which are observable in the superconducting state in the Earth's gravitational field are considered.Comment: 13 pages, 2 figure

    Ohm's Law for Plasma in General Relativity and Cowling's Theorem

    Full text link
    The general-relativistic Ohm's law for a two-component plasma which includes the gravitomagnetic force terms even in the case of quasi-neutrality has been derived. The equations that describe the electromagnetic processes in a plasma surrounding a neutron star are obtained by using the general relativistic form of Maxwell equations in a geometry of slow rotating gravitational object. In addition to the general-relativistic effect first discussed by Khanna \& Camenzind (1996) we predict a mechanism of the generation of azimuthal current under the general relativistic effect of dragging of inertial frames on radial current in a plasma around neutron star. The azimuthal current being proportional to the angular velocity ω\omega of the dragging of inertial frames can give valuable contribution on the evolution of the stellar magnetic field if ω\omega exceeds 2.7×1017(n/σ)s12.7\times 10^{17} (n/\sigma) \textrm{s}^{-1} (nn is the number density of the charged particles, σ\sigma is the conductivity of plasma). Thus in general relativity a rotating neutron star, embedded in plasma, can in principle generate axial-symmetric magnetic fields even in axisymmetry. However, classical Cowling's antidynamo theorem, according to which a stationary axial-symmetric magnetic field can not be sustained against ohmic diffusion, has to be hold in the general-relativistic case for the typical plasma being responsible for the rotating neutron star.Comment: Accepted for publication in Astrophysics & Space Scienc

    Magnetic Fields of Spherical Compact Stars in Braneworld

    Get PDF
    We study the dipolar magnetic field configuration in dependence on brane tension and present solutions of Maxwell equations in the internal and external background spacetime of a magnetized spherical star in a Randall-Sundrum II type braneworld. The star is modelled as sphere consisting of perfect highly magnetized fluid with infinite conductivity and frozen-in dipolar magnetic field. With respect to solutions for magnetic fields found in the Schwarzschild spacetime brane tension introduces enhancing corrections both to the interior and the exterior magnetic field. These corrections could be relevant for the magnetic fields of magnetized compact objects as pulsars and magnetars and may provide the observational evidence for the brane tension through the modification of formula for magneto-dipolar emission which gives amplification of electromagnetic energy loss up to few orders depending on the value of the brane tension.Comment: 11 pages, 5 figures, 1 tabl

    Quadratic Curvature Gravity with Second Order Trace and Massive Gravity Models in Three Dimensions

    Full text link
    The quadratic curvature lagrangians having metric field equations with second order trace are constructed relative to an orthonormal coframe. In n>4n>4 dimensions, pure quadratic curvature lagrangian having second order trace constructed contains three free parameters in the most general case. The fourth order field equations of some of these models, in arbitrary dimensions, are cast in a particular form using the Schouten tensor. As a consequence, the field equations for the New massive gravity theory are related to those of the Topologically massive gravity. In particular, the conditions under which the latter is "square root" of the former are presented.Comment: 24 pages, to appear in GR

    Casimir Effect in Hyperbolic Polygons

    Get PDF
    We derive a trace formula for the spectra of quantum mechanical systems in hyperbolic polygons which are the fundamental domains of discrete isometry groups acting in the two dimensional hyperboloid. Using this trace formula and the point splitting regularization method we calculate the Casimir energy for a scalar fields in such domains. The dependence of the vacuum energy on the number of vertexes is established.Comment: Latex, 1

    Generalized exclusion and Hopf algebras

    Full text link
    We propose a generalized oscillator algebra at the roots of unity with generalized exclusion and we investigate the braided Hopf structure. We find that there are two solutions: these are the generalized exclusions of the bosonic and fermionic types. We also discuss the covariance properties of these oscillatorsComment: 10 pages, to appear in J. Phys.
    corecore