18 research outputs found

    Amplitude equations for a system with thermohaline convection

    Full text link
    The multiple scale expansion method is used to derive amplitude equations for a system with thermohaline convection in the neighborhood of Hopf and Taylor bifurcation points and at the double zero point of the dispersion relation. A complex Ginzburg-Landau equation, a Newell-Whitehead-type equation, and an equation of the ϕ4\phi^4 type, respectively, were obtained. Analytic expressions for the coefficients of these equations and their various asymptotic forms are presented. In the case of Hopf bifurcation for low and high frequencies, the amplitude equation reduces to a perturbed nonlinear Schr\"odinger equation. In the high-frequency limit, structures of the type of "dark" solitons are characteristic of the examined physical system.Comment: 21 pages, 8 figure

    Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    Get PDF
    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth the Al atoms do not diffuse from substrate into the film and the films with thickness up to 100 nm exhibit the excellent direct current (DC) properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R(sub S)). The low value of surface resistance R(sub S)(75 GHz, 77K) = 20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films
    corecore