182 research outputs found

    Santos Replies

    Get PDF
    E. Santos gives comments on violation of Bell’s theorem as discussed by A. I. M. Rae, Y. Ben-Aryeh, and A. Postan.(AIP

    CD8(+) T-Cell Responses to Trypanosoma cruzi Are Highly Focused on Strain-Variant trans-Sialidase Epitopes

    Get PDF
    CD8(+) T cells are crucial for control of a number of medically important protozoan parasites, including Trypanosoma cruzi, the agent of human Chagas disease. Yet, in contrast to the wealth of information from viral and bacterial infections, little is known about the antigen specificity or the general development of effector and memory T-cell responses in hosts infected with protozoans. In this study we report on a wide-scale screen for the dominant parasite peptides recognized by CD8(+) T cells in T. cruzi–infected mice and humans. This analysis demonstrates that in both hosts the CD8(+) T-cell response is highly focused on epitopes encoded by members of the large trans-sialidase family of genes. Responses to a restricted set of immunodominant peptides were especially pronounced in T. cruzi–infected mice, with more than 30% of the CD8(+) T-cell response at the peak of infection specific for two major groups of trans-sialidase peptides. Experimental models also demonstrated that the dominance patterns vary depending on the infective strain of T. cruzi, suggesting that immune evasion may be occurring at a population rather than single-parasite level

    High Throughput Selection of Effective Serodiagnostics for Trypanosoma cruzi infection

    Get PDF
    The diagnosis of Trypanosoma cruzi infection (the cause of human Chagas disease) is difficult because the symptoms of the infection are often absent or non-specific, and because the parasites themselves are usually below the level of detection in the infected subjects. Therefore, diagnosis generally depends on the measurement of T. cruzi–specific antibodies produced in response to the infection. However, current methods to detect anti–T. cruzi antibodies are relatively poor. In this study, we have conducted a broad screen of >400 T. cruzi proteins to identify those proteins which are best able to detect anti–T. cruzi antibodies. Using a set of proteins selected by this screen, we were able to detect 100% of >100 confirmed positive human cases of T. cruzi infection, as well as suspect cases that were negative using existing tests. This protein panel was also able to detect apparent changes in infection status following drug treatment of individuals with chronic T. cruzi infection. The results of this study should allow for significant improvements in the detection of T. cruzi infection and better screening methods to avoid blood transfusion–related transmission of the infection, and offer a crucial tool for determining the success or failure of drug treatment and other intervention strategies to limit the impact of Chagas disease

    Shotgun Sequencing Analysis of Trypanosoma cruzi I Sylvio X10/1 and Comparison with T. cruzi VI CL Brener

    Get PDF
    Trypanosoma cruzi is the causative agent of Chagas disease, which affects more than 9 million people in Latin America. We have generated a draft genome sequence of the TcI strain Sylvio X10/1 and compared it to the TcVI reference strain CL Brener to identify lineage-specific features. We found virtually no differences in the core gene content of CL Brener and Sylvio X10/1 by presence/absence analysis, but 6 open reading frames from CL Brener were missing in Sylvio X10/1. Several multicopy gene families, including DGF, mucin, MASP and GP63 were found to contain substantially fewer genes in Sylvio X10/1, based on sequence read estimations. 1,861 small insertion-deletion events and 77,349 nucleotide differences, 23% of which were non-synonymous and associated with radical amino acid changes, further distinguish these two genomes. There were 336 genes indicated as under positive selection, 145 unique to T. cruzi in comparison to T. brucei and Leishmania. This study provides a framework for further comparative analyses of two major T. cruzi lineages and also highlights the need for sequencing more strains to understand fully the genomic composition of this parasite
    corecore