8 research outputs found

    Isolation, characterisation, and selection of wine yeast strains in Etyek-Buda wine district, Hungary

    Get PDF
    Initiated by the Association “Wine Route of Etyek Wine District”, the objectives of this study were to isolate and identify autochthonous yeast strains from local wines and to determine their oenologically important properties. The first aim of this work was to characterize the taxonomic and phenotypic diversity of the representative Saccharomyces yeast strains that dominate the spontaneous fermentations in this wine district. The results obtained by molecular ribotyping (ARDRA) revealed a strong dominance of S. cerevisiae, but S. bayanus var. uvarum was also present sporadically. Some of the natural isolates exhibited high volatile acid production or poor fermentation capacity, which imply a quality risk in spontaneous fermentations. Most of the isolates, however, displayed good oenological features during lab scale fermentations. As the second aim of this work, the most promising, selected strains were further tested for oenological properties in microvinification scale and, finally, in large scale fermentations. The analytical and sensory analysis proved that selected strains, including S. bayanus var. uvarum, can be used as local starter cultures, which may contribute to the typicality of the local wines in comparison with commercial starters

    Effect of High-Pressure Homogenization on the Formulation of Micro- and Nanocrystals Containing Poorly Watersoluble Meloxicam

    No full text
    Specially engineered drug particles can solve solubility and formulation problems, [...

    Effect of polymers for aerolization properties of mannitol-based microcomposites containing meloxicam

    No full text
    The aim of this study was to develop respirable microcomposites of meloxicam and adjuvants (different polymers and amino acid) for inhalation as drug delivery systems for local lung therapy. Meloxicam was transformed into microcomposites, i.e. crystals of drug embedded in mannitol and other adjuvants. We focused on the influence of polymers concentration on the physico-chemical properties of the microparticles. The objective was to optimize the aerodynamic parameters of the particles and to achieve the fast release of meloxicam. The size of the meloxicam particles suspended in aqueous mannitol solution containing different additives was reduced by high-pressure homogenization. Dry powders were produced from the microsuspensions by a co-spray-drying technique. Morphological, structural and in vitro dissolution studies were presented. The in vitro aerosol performance was tested by using the multistage Next Generation Impactor. It was found that polyvinyl alcohol and polyvinylpyrrolidone, promoted the presence of individual microcomposites by decreasing the aggregation tendency. L-leucine improved the fine particle fraction content of the samples. The co-spray-dried mannitol-based formulations containing the additives released 90% of the meloxicam by dissolution in 5 min. Aerodynamic assessment showed the fine particle fraction was >53% and the mass median aerodynamic diameter was <3.52 lm. This study indicated that meloxicam micro composites prepared according to the described procedure are suitable for pulmonary local anti-inflammatory and antifibrotic therapy
    corecore