32 research outputs found
Needle & knot : binder boilerplate tied up
To lighten the burden of programming language mechanization, many approaches have been developed that tackle the substantial boilerplate which arises from variable binders. Unfortunately, the existing approaches are limited in scope. They typically do not support complex binding forms (such as multi-binders) that arise in more advanced languages, or they do not tackle the boilerplate due to mentioning variables and binders in relations. As a consequence, the human mechanizer is still unnecessarily burdened with binder boilerplate and discouraged from taking on richer languages.
This paper presents Knot, a new approach that substantially extends the support for binder boilerplate. Knot is a highly expressive language for natural and concise specification of syntax with binders. Its meta-theory constructively guarantees the coverage of a considerable amount of binder boilerplate for well-formed specifications, including that for well-scoping of terms and context lookups. Knot also comes with a code generator, Needle, that specializes the generic boilerplate for convenient embedding in COQ and provides a tactic library for automatically discharging proof obligations that frequently come up in proofs of weakening and substitution lemmas of type-systems.
Our evaluation shows, that Needle & Knot significantly reduce the size of language mechanizations (by 40% in our case study). Moreover, as far as we know, Knot enables the most concise mechanization of the POPLmark Challenge (1a + 2a) and is two-thirds the size of the next smallest. Finally, Knot allows us to mechanize for instance dependentlytyped languages, which is notoriously challenging because of dependent contexts and mutually-recursive sorts with variables
Combustion and emissions characterization of soy methyl ester biodiesel blends in an automotive turbocharged diesel engine
Recent increases in petroleum fuel costs, corporate average fuel economy (CAFE) regulations, and environmental concerns about CO2 emissions from petroleum based fuels have created an increased opportunity for diesel engines and non-petroleum renewable fuels such as biodiesel. Additionally, the Environmental Protection Agencies Tier II heavy duty and light duty emissions regulations require significant reductions in NOx and diesel particulate matter emissions for diesel engines. As a result, the diesel engine and aftertreatment system is a highly calibrated system that is sensitive to fuel characteristics. This study focuses on the impact of soy methyl ester biodiesel blends on combustion performance, NOx, and carbonaceous soot matter emissions. Tests were completed using a 1.9 L, turbocharged direct injection diesel engine using commercially available 15 ppm ultra low sulfur (ULS) diesel, a soy methyl ester B20 biodiesel blend (20 vol % B100 and 80 vol % ULS diesel), and a pure soy methyl ester biodiesel. Results show a reduction in NOx and carbonaceous soot matter emissions, and an increase in brake specific fuel consumption with the use of biodiesel. Further, traditional methodology assumes that diesel fuels with a high cetane number have a reduced ignition delay. However, results from this study show the cetane number is not the only parameter effecting ignition delay due to increased diffusion burn. © 2010 by ASME
Combustion and emissions characterization of soy methyl ester biodiesel blends in an automotive turbocharged diesel engine
Recent increases in petroleum fuel costs, CAFE standards, and environmental concerns about CO2 emissions from petroleum based fuels have created an increased opportunity for diesel engines and renewable alternative fuels such as biodiesel. Additionally, the Environmental Protection Agencies Tier II heavy duty and light duty emissions regulations require significant reductions in NOx and diesel particulate matter emissions for diesel engines. As a result, the diesel engine and aftertreatment system is a highly calibrated system that is sensitive to changing fuel characteristics. This study focuses on the impact of soy methyl ester biodiesel blends on combustion performance, carbonaceous soot matter and NOx emissions. Tests were completed with an I4 1.9L, turbocharged, high speed, direct injection diesel engine using commercially available 15 ppm ultra low sulfur diesel, a soy methyl ester B20 (20% biodiesel and 80% ultra low sulfur diesel) biodiesel blend and a pure soy methyl ester biodiesel. Results show a reduction in NOx and carbonaceous soot matter emissions and an increase in brake specific fuel consumption with the use of biodiesel. Further, traditional methodology assumes that diesel fuels with a high cetane number have a reduced ignition delay. However, results from this study show the cetane number is not the only parameter effecting ignition delay. Copyright © 2009 by ASME