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Binding Structures as an Abstract Data Type

Wilmer Ricciotti

IRIT – Institut de Recherche en Informatique de Toulouse
Université de Toulouse

Wilmer.Ricciotti@irit.fr

Abstract. A long line of research has been dealing with the representa-
tion, in a formal tool such as an interactive theorem prover, of languages
with binding structures (e.g. the lambda calculus). Several concrete en-
codings of binding have been proposed, including de Bruijn dummies, the
locally nameless representation, and others. Each of these encodings has
its strong and weak points, with no clear winner emerging. One common
drawback to such techniques is that reasoning on them discloses too much
information about what we could call “implementation details”: often,
in a formal proof, an unbound index will appear out of nowhere, only to
be substituted immediately after; such details are never seen in an infor-
mal proof. To hide this unnecessary complexity, we propose to represent
binding structures by means of an abstract data type, equipped with
high level operations allowing to manipulate terms with binding with
a degree of abstraction comparable to that of informal proofs. We also
prove that our abstract representation is sound by providing a de Bruijn
model.

1 Introduction

The techniques for reasoning on languages with binders are a very popular topic
in both programming and logic ([20,5]). Especially in logic, the choice of a repre-
sentation of binding structures is one of the most significant issues when formal-
izing the metatheory of a programming language. Over the years, a number of
different styles have been proposed to deal with binding, roughly divided in two
different categories: first order encodings, also called concrete encodings, and
higher-order encodings like higher-order abstract syntax (HOAS). In interactive
theorem provers based on a strong type theory, like Coq, Matita, or Agda, trivial
implementations of HOAS by means of inductive types are rejected because they
do not satisfy the positivity checks required by those systems to ensure consis-
tency and, more importantly, adequacy concerns related to the appearance of
exotic terms arise; thus, concrete encodings are more usually employed (notable
exceptions include two-level approaches [8] and weak HOAS [10]).

Concrete encodings include some of the best known styles, like the de Bruijn
nameless encoding [16] (which represents variables using indices pointing to
the binder that declares them), the locally nameless encoding (a variant of
the de Bruijn encoding where only bound variables are represented by indices,



whereas free variables still use names) and the canonically named encoding of
Pollack and Sato [23], where a bound variable is represented by means of a name
that is programmatically chosen depending on the structure of the term within
scope. All of these styles are described as canonical because terms that are equal
up to α-renaming are identified. We have studied these styles in [17,3] and drawn
a comparison in [22].

Our experience tells us that every concrete encoding has its own disadvan-
tages, but more importantly that all of them share one problem: they force
the formalizer to deal with the intricacy of the inner representation of binding,
something that in an informal proof is never seen. In a formal proof based on a
concrete approach, it is only a matter of time before nameless dummies, lifting
operations, or name choosing operations come to the surface.

We should ask ourselves whether this inconvenience is inherent to the con-
crete representation of binding. Our understanding is that very often (if not
always) the internal representation of binding must be treated explicitly be-
cause of the lack of an infrastructure designed to keep it hidden. We have very
good access to the implementation but, crucially, we lack an abstract view on
binding.

This paper describes a project which aims at representing binding only by
means of abstract operations (similar to the ones employed in a pencil-and-
paper proof), keeping the implementation details hidden from the user. More
precisely, we will represent the terms of the object language as an abstract data
type, which can only be manipulated by means of the operations and logical
properties provided by its module. Based on this, we will prove two kinds of
results:

– soundness properties, showing the existence of an implementation, or model,
of the abstract data type which validates all the stated properties;

– theorems about the object language (e.g.: subject reduction), whose are car-
ried out within the abstract data type, without resorting to any property
specific to the model.

While other proposals to treat binding structures axiomatically exist ([11,19]),
in this paper we will address some topics that have been neglected, particularly
the treatment of inductively defined predicates over binding structures. All of
the proofs presented here have been proved valid in the Matita theorem prover.1

The paper is structured as follows: Section 2 presents an abstract data type
representing the term language of the simply typed lambda calculus; in Section 3
we provide an implementation of the abstract data type in the form of a locally
nameless model; after recalling the problem of induction principle strengthening
in the context of typing rules (Section 4), we extend our abstract data type to the
level of type systems (Section 5) and beta reduction (Section 6), showing that
the technique is sufficiently powerful to carry out common proofs like weakening
and subject reduction; finally Section 7 concludes.

1 The Matita formalization can be found at http://www.irit.fr/~Wilmer.

Ricciotti/publications.html .

http://www.irit.fr/~Wilmer.Ricciotti/publications.html
http://www.irit.fr/~Wilmer.Ricciotti/publications.html


2 An abstract view of binding

We present in this section a collection of abstract data types describing a simple
language with binding: the simply typed lambda calculus (or, for brevity, λ→).
Similarly to the axiomatization in [11], the operations working on our data type
include a set of opaque constants acting as “constructors” for the terms of the
language and a principle allowing to define functions by structural recursion
on the terms. However, instead of a primitive substitution function, we provide
facilities to form contexts (terms with holes) and apply them to variables, which
we regard as more basic. An operation to retrieve the list of the free variables in a
term or context is also given. In addition, properties asserting the computational
behavior of the aforementioned operations are provided.

Signature Our module defines the abstract data types of λ→ as follows:

tp : Type
Atom : tp
Arr : tp ⇒ tp ⇒ tp

(Λi)i∈N : Type
Par : A⇒ Λ0

App : Λ0 ⇒ Λ0 ⇒ Λ0

Lam : A⇒ tp ⇒ Λ0 ⇒ Λ0

ν : A⇒ Λi ⇒ Λi+1

−d−e : Λi+1 ⇒ A⇒ Λi

FV : (Λi)i∈N ⇒ list A

RΛ0
: ∀T : Λ0 ⇒ Type, C : list A.

(∀x : A.T (Par x))⇒
(∀u, v : Λ0.T u⇒ T v ⇒ T (App u v))⇒(
∀x : A, σ : tp, v : Λ1.x /∈ FV(v), C ⇒ T (vdxe)
⇒ T (Lam x σ (vdxe))

)
⇒

∀u : Λ0.T u

We call this presentation of binding ostensibly named because at the external
level we always manipulate terms as entities containing names, including bound
variables: we never see bound variables represented as nameless dummies, or
pointers to their binder. The concrete implementation of binding structures may
or may not use names, but this is hidden from the user.

The set of types tp of the simply typed lambda calculus is of no particular
interest and is here provided for reference only: it is the free algebra obtained
from the zeroary constructor of the atomic type Atom and the binary constructor
of arrow (function) types Arr. Types of the simply typed lambda calculus will
be denoted by σ,τ ,...



Λi will represent the type of terms with i holes, or i-ary contexts. Zeroary
contexts are taken as the terms of the calculus. We will denote terms and contexts
alike by u, v, . . .. The type of names A is an arbitrary infinite type with decidable
equality. We assume the existence of an operation ϕ : list A⇒ A allowing us to
choose a name which is fresh with respect to any given finite list (i.e., ϕ(C) /∈ C
holds for all finite lists of names C).

The constructors of terms include Par, encapsulating a name to represent a
free variable or parameter, applications App, and lambda abstractions Lam. Just
as in informal syntax, lambda abstractions bear a type and bind a name inside
a subterm. For example, the identity function λx : Atom.x is expressed as

Lam x Atom (Par x)

provided that x is a name in A.
Crucially, to put our representation to some use we need to be able to talk

about contexts. Two operations ν and −d−e (respectively variable closing or
context formation and variable opening or context application) are provided to
build and apply contexts: νx.u substitutes a hole for all (free) occurrences of
Par x in u, thus increasing its arity, whereas udxe replaces the last created hole
in u with Par x, decreasing its arity. It is worth noting that, since it cancels out
a free variable, ν acts like a binder (the notation was chosen in analogy to the
“new channel” operator of the π-calculus). Closing and opening can be combined
(in this order) to rename a variable: we will use the following special notation
for variable renaming :

u 〈y/x〉 , (νx.u)dye

If p = (x, y) is a pair of variable names, we will write u 〈p〉 for u 〈y/x〉. This
notation is further extended to vectors: if −→p = [p1, . . . , pn] is a vector of pairs,
we will write u 〈−→p 〉 for u 〈p1〉 · · · 〈pn〉.

An abstract operation FV takes as input a term or a context and returns
the list of free names used in that term or context. Lastly, RΛ0

is a primitive
recursion principle over terms. Recursion principles on inductive types have a
well defined shape, which is followed by RΛ0

, except for the Lam case, which
provides a special treatment for the bound variable. We will make this clear in
the following paragraphs.

Properties of terms and contexts The following properties of terms and context
forming operations are assumed:

x 〈y/x〉 = y
z 〈y/x〉 = z if z 6= x

(App u v) 〈y/x〉 = App (u 〈y/x〉) (v 〈y/x〉)
(Lam z σ u) 〈y/x〉 = Lam z σ (u 〈y/x〉) if z 6= x, y

u 〈x/x〉 = u (*)
νx.(udxe) = u if x /∈ FV(u)

Lam x σ (udxe) = Lam y σ (udye) if x, y /∈ FV(u)



The first four lines fall logically into the same group, they describe the computa-
tional behaviour of renaming. The last line is also remarkable, since it expresses
the fact that Λ0 is canonical, i.e. α-convertible terms are provably equal. The
second-to-last property expresses a sort of an “η-equivalence” on contexts: open-
ing a context and then closing it with respect to the same variable yields the
original context, provided that the variable involved is fresh.

The property marked with (*) has a special status since, assuming a suitable
induction principle on Λ0, it could be proved from the other properties whenever
u is a term; we will provide such an induction principle on terms, but if we want
(*) to be valid not just for terms, but for proper contexts as well, we will still
have to assume it as part of the abstract data type.

Recursion We employ contexts to express a recursion principle RΛ0 for Λ0,
allowing us to define functions over terms by structural recursion.

The lines 2–5 of the type of RΛ0
express the types of the arguments of the

principle which will provide its behaviour in the Par, App, and Lam case. To
better understand how RΛ0

works, we use it to define the usual operation of
substitution of terms for free variables. Informally, substitution is often defined
as follows:

u [v/x] ,


(Par x) [v/x] = v
(Par y) [v/x] = Par y if x 6= y
(App u1 u2) [v/x] = App (u1 [v/x]) (u2 [v/x])
(Lam y σ u1) [v/x] = Lam y σ (u1 [v/x]) if y /∈ {x} ∪ FV(v)

This is not a regular pattern matching over an inductive type: while the Par and
App cases do not look special (and the same can be said about the types of the
associated clauses in RΛ0

) the Lam case hides an implicit α-conversion in order
to make the bound variable different from both x and any free variable occurring
in v, to prevent variable capture. More generally, an effective recursion principle
over lambda abstractions should allow us to retrieve, for a bound variable, a
name that is fresh with respect to an arbitrary list: for this reason, we add a
“freshness context” C to the principle RΛ0

(similarly to what is done in Nominal
Isabelle [25]).

Thus, we can express the substitution operation as a structurally recursive
function over ostensibly named terms as follows.

Definition 1 (substitution). For all terms u, v and parameter names x, the
function subst is defined as follows:

subst u x v , RΛ0 (λ .Λ0) (x,FV(v))
(λy.if (x = y) then v else (Par y))
(λu1, u2, r1, r2.App r1 r2)
(λy, σ, u∗, , r∗.Lam y σ r∗) u

We will use the notation u [v/x] as a short form for subst u x v.



In this definition, variables r1,r2,r∗ are used to represent the result of re-
cursion on the subterms u1,u2,u∗dye respectively. The abstraction operation is
special: the recursion principle unpacks it as Lam y σ (u∗dye), where u∗ is a unary
context and y is taken to be fresh with respect to the list x,FV(v) we provided as
an argument and also with respect to FV(u∗) (a proof that y /∈ x,FV(v),FV(u∗)
is also provided as the underscore “ ” argument, that is irrelevant to the defini-
tion of the substitution, but may be employed in a proof of correctness).

Properties of FV For FV, we assume that the following properties hold:

FV(Par x) = [x]
FV(App u v) = FV(u) ∪ FV(v)
FV(Lam x σ u) = FV(νx.u)

x ∈ FV(νy.u) ⇐⇒ (x 6= y ∧ x ∈ FV(u))

FV(udxe) ⊆ {x} ∪ FV(u)
FV(u) ⊆ FV(udxe)

Properties of recursion Since the recursion principle is part of our ostensibly
named interface, it is opaque. This means its algorithmic behaviour must be
expressed explicitly. Let Rec be short for RΛ0

T C fPar fApp fLam (where T ,
C, fPar, fApp, fLam have a suitable type). We will assume that the following
properties hold:

Rec (Par x) = fPar x

Rec (App u v) = fApp u v (Rec u) (Rec v)

∀U : (∀u : Λ0.T u⇒ Type).x /∈ FV(u)⇒
(∀y,Hy.U (udye) (fLam C y σ u Hy (Rec (udye))))⇒
U (Lam x σ (udxe) (Rec (Lam x σ (udxe)))

The first two lines are equations stating that on parameters and applications,
RΛ0 behaves as a normal recursion operator on an inductive type: it can be
rewritten as an application of the appropriate branch (fPar or fApp) to the ar-
guments of the constructor and, in the case of App, to the result of recursion
on its subterms. The last line expresses the behaviour in the Lam case, which is
more complicated: if we allowed the same scheme as with Par and App we could
take fLam = λy, , , , .y and use RΛ0

to expose the variable bound by Lam as
follows:

Rec (Lam x σ (udxe))
= (λy, , , , .y) x σ u H (Rec (udxe))
= x

(where H is any proof that x /∈ FV(u), C). As it turns out, this equation would
make it possible to look into the name bound by Lam: this would in turn enable



us to discriminate abstractions in terms of their bound variables, which is clearly
inconsistent with the α-equivalence hypothesis.

The fact that we should not be able to extract naming information from
binders prevents us from expressing the computational behaviour of the recursion
principle explicitly in the Lam case. The property we stated is a “constrained
rewriting principle” which does not allow, in general, to compute the result of a
structurally recursive function in the Lam x σ (udxe) case. However, if we employ
it in a proof whose goal involves such a function, we will get a new variable y,
together with a proof Hy that y /∈ C,FV(u) (both universally quantified in the
property) and the goal will be rewritten in such a way that we have the illusion
that Lam x σ (udxe) has been renamed to Lam y σ (udye) and a computation
step on the recursive definition has occurred. Notice the difference with Nominal
Isabelle, which does not allow one to define functions exposing bound variables:
in contrast, not only can we write a function that given a term Lam x σ (udxe)
(with x /∈ FV(u)) will return the tuple 〈y, σ, udye〉 (for some y /∈ FV(u)), but
we can also prove that putting together those items we obtain the original term,
i.e. Lam x σ (udxe) = Lam y σ (udye).

2.1 Some derived properties

Since RΛ0
provides case analysis, it can be used to prove many of the proper-

ties that we expect from Par, App and Lam as constructors. Among these, an
important one concerns injectivity and discrimination:

Lemma 2. The following properties hold:

– if Par x = Par y, then x = y;
– if App u1 u2 = App v1 v2, then u1 = v1 and u2 = v2;
– if Lam x σ u = Lam x τ v, then σ = τ and u = v;
– different constructors always yield different terms: Par x 6= App u v,

App u1 u2 6= Lam x σ v, Par x 6= Lam y σ v.

Proof (sketch). McBride’s generic proof for inductive types ([13]) only requires
pattern matching and reasoning by cases: it is thus easy to adapt it to our
abstract data type.

One thing to notice is that the injectivity property for Lam requires the
bound variable to be the same in both abstractions. If this is not the case, the
two should be made equal by α-equivalence before applying injectivity.

Other properties cannot be proved as easily. One reason for this is that
the constrained rewriting approach for the recursion principle is not completely
satisfying: we are giving up the possibility to compute directly the result of
functions defined by means of RΛ0 because some of those functions (like those
that try to expose bound variables) are ill-behaved. But other functions, like
substitution, are well-behaved: we expect to know that whenever the bound
variable x is not in y,FV(v), then the following equality holds:

(Lam x σ u) [v/y] = Lam x σ (u [v/y])



As a matter of fact, the equality holds in the context of our abstract data
type. To prove it, we need the following induction principle:

Theorem 3. The following induction principle EΛ0
is provable:

EΛ0 : ∀P : Λ0 ⇒ Prop.
(∀x.P (Par x))⇒
(∀u1, u2.P u1 ⇒ P u2 ⇒ P (App u1 u2))⇒
(∀x, σ, v.x /∈ FV(v)⇒

(∀y.y /∈ FV(v)⇒ P (vdye))⇒ P (Lam x σ (vdxe)))⇒
∀u.P u

Proof (sketch). We assume the branches of EΛ0
as hypotheses and we subse-

quently prove ∀−→p .P (u 〈−→p 〉) using the recursion principleRΛ0 on u. This implies
P u by instantiating −→p with the empty list [].

That EΛ0 can be proved using RΛ0 should not be surprising, as in type
theory recursion and induction are intimately related. Actually, when we ignore
the computational content ofRΛ0

and only consider its type, we see that its form
is very similar to that of an induction principle (where the result of recursion
on a subterm corresponds to the induction hypothesis). Besides the fact that
EΛ0 returns a proof of a proposition rather than an object of a given type2,
the biggest difference between RΛ0 and EΛ0 is that the latter, in the Lam case,
provides a different induction hypothesis for all possible choices of the bound
variable, while RΛ0

only considers a single variable (which one is not under
our control: at most, we can require that it should be sufficiently fresh): this
is usually enough to define a recursive function, but not in proofs by induction
like the following ones. We will come back to the topic of universally quantified
induction hypotheses in Sections 4 and 5.

Lemma 4. For all u, x, v, FV(u [v/x]) ⊆ FV(u) ∪ FV(v).

Lemma 5. For all u, x, v, if −→p is a list of pairs of variable names not in
x,FV(v), then

u [v/x] 〈−→p 〉 = (u 〈−→p 〉) [v/x]

Both proofs are by induction on u, with Lemma 5 using Lemma 4 in the Lam
case. These two properties are what we need to prove the commutation property
for subst in the Lam case.

Fact 6 If x /∈ y,FV(v), then (Lam x σ u) [v/y] = Lam x σ (u [v/y])

Proof. Notice that u = u 〈x/x〉 = (νx.u)dxe. Thus we can apply the constrained
rewriting property: this leaves us with the goal

Lam z σ ((u 〈z/x〉) [v/y]) = Lam x σ (u [v/y])

2 Induction principles are usually given for Prop; however we could as well derive a
similar principle for Type, at no additional formalization cost.



where z is not free in νx.u or y,FV(v). The goal can be proved by rewriting the
left-hand side as follows:

Lam z σ ((u 〈z/x〉) [v/y])
= Lam z σ (u [v/y] 〈z/x〉) (by Lemma 5)
= Lam z σ ((νx.u [v/y])dze) (by def. of renaming)
= Lam x σ ((νx.u [v/y])dxe) (by α-equivalence)
= Lam x σ (u [v/y] 〈x/x〉) (by def. of renaming)
= Lam x σ (u [v/y]) (by axiom)

where the α-equivalence holds because z /∈ νx.u [v/y], which is easily proved using
Lemma 4.

It is worth noting that the recursion principle in Gordon and Melham’s ax-
iomatization ([11]) handles abstractions differently, allowing direct computation
of functions employing it. This, however, comes at the price of requiring explicit
treatment of variable renaming in the function definition. As a consequence, if we
expressed substitution in that style, the following computation property would
trivially hold in the Lam case:

(Lam x σ u) [v/y] = Lam ϕ(y,FV(v)) σ ((u 〈ϕ(y,FV(v))/x〉) [v/y])

However, this is a weaker property than Fact 6 (which remains provable, with a
similar argument as ours).

3 A locally nameless model

A locally nameless representation [9] of a language with binders is a variant of
de Bruijn’s nameless representation where names are allowed to represent free
parameters, but indices are always used to express bound variables. A locally
nameless representation of the simply typed lambda calculus can be given as the
following pretm inductive type of pre-terms:

inductive pretm : Type ,
var : N⇒ pretm
par : A⇒ pretm
app : pretm ⇒ pretm ⇒ pretm
abs : tp ⇒ pretm ⇒ pretm.

Notice we use lowercase identifiers to distinguish the constructors of pretm
from the similar operations discussed in the previous section. The constructor
var is used to construct indices and par for named parameters; abs is a nameless
abstraction that is used as the counterpart of Lam abstractions, binding an index
rather than a named variable: by convention, our indices are zero-based, so that
index var k is considered to be bound to the (k + 1)-th outer abstraction.

In such a representation, indices whose values are too high and thus do not
point to any binder are said to be dangling : a dangling index is neither a bound



variable nor a free, named parameter, thus it is often an unwanted situation.
Most formalizations employing this style adopt a validity predicate on pre-terms
that is verified only for real terms, i.e. those that do not contain dangling indices
(also called locally closed).

However, in our case the type of pre-terms will have a much more substantial
value as the interpretation of both terms and n-ary contexts. We regard dangling
indices as holes implicitly bound at the outermost level, waiting for a context
application to fill a free variable in them.

The following function checks whether a pre-term can be the interpretation
of a k-ary context by verifying that the value of all dangling indices is less than
k:

check u k ,


check (var n) k =

{
true if n < k
false else

check (par x) k = true
check (app u1 u2) k = (check u1 k) ∧ (check u2 k)
check (abs σ u1) k = check u1 (k + 1)

We thus define the interpretation of i-ary ostensibly named contexts in the
locally nameless model as the dependent pair associating a pre-term u to the
proof that check u i = true:

JΛiK = ctx i , Σu : pretm.check u i = true

We define algorithmically in the model two contextual operations that are
a counterpart to the similar operations of the ostensibly named presentation.
They employ a parameter k that is used, in recursive calls, to keep track of the
number of abstractions crossed.

νkx.u ,



νkx.var n =

{
var n if n < k
var (n+ 1) else

νkx.par y =

{
var k if x = y
par y else

νkx.app u1 u2 = app (νkx.u1) (νkx.u2)
νkx.abs σ u1 = abs σ (νk+1x.u1)

udxek ,


(var n)dxek =

par x if n = k
var n if n < k
var (n− 1) if n > k

(par y)dxek = par y
(app u1 u2)dxek = app (u1dxek) (u2dxek)
(abs σ u1)dxek = abs σ (u1dxek+1)

The definition of JΛiK as a dependent pair implies that, in the model, every
term or context is composed of a structural part – a pre-term – together with a
proof object asserting that the pre-term has the expected arity. This is reflected
in the interpretation:



JPar xK = (par x, . . .)
JApp u1 u2K = (app π1 (Ju1K) π1 (Ju2K), . . .)
JLam x σ u1K = (abs σ (ν0x.π1 (Ju1K)), . . .)

Jνx.uK , (ν0x.π1 (JuK), . . .)
JudxeK , (π1 (JuK)dxe0, . . .)

where π1 is the left projection of a dependent pair (here used to extract a pre-
term from the interpretation of a term) and the ellipses “. . .” must be filled
with appropriate proof objects. When we limit ourselves to the structural part,
most of the interpretations are straightforward, but that of Lam is worth looking
into: the name-carrying lambda is transformed by interpreting its body u1 first,
then turning all the occurrences of the parameter x into a dangling index that
is immediately bound by a nameless abstraction.

We have formalized the existence of proof objects such that the interpretation
of terms and contexts satisfies the following lemma, stating its soundness.

Lemma 7.

1. JPar xK : ctx 0
2. if JuK : ctx 0 and JvK : ctx 0, then JApp u vK : ctx 0
3. if JuK : ctx 0, then JLam x σ uK : ctx 0
4. if JuK : ctx i, then Jνx.uK : ctx (i+ 1)
5. if JuK : ctx (i+ 1), then JudxeK : ctx i

We omit the trivial interpretation of the FV operation and state some of the
remaing properties we proved to ensure the validity of the model.

Lemma 8.

1. Jx 〈y/x〉K = JyK
2. if x 6= y, then Jx 〈z/y〉K = JxK
3. J(App u v) 〈y/x〉K = JApp (u 〈y/x〉) (v 〈y/x〉)K
4. if z 6= x, y, then J(Lam z σ u) 〈y/x〉K = JLam z σ (u 〈y/x〉)K

Lemma 9. (α-conversion)
If x, y /∈ FV(u), then JLam x σ (udxe)K = JLam y σ (udye)K

Lemma 10.

1. J(νx.u)dxeK = JuK
2. if x /∈ FV(u), then Jνx.(udxe)K = JuK

A final piece is missing to complete the model: an intepretation of the recur-
sion principle RΛ0

, and the proof that its equational properties are valid. We
provide such an interpretation as a recursive function pretm rec on pre-terms,
which is later lifted to proper terms.



The function pretm rec receives similar arguments to the abstract RΛ0
, plus

an additional fvar for dangling indices (which are missing from the ostensibly
named presentation) that is not of particular interest here.

When dealing with a term of the form abs σ u, we generate a new fresh name
x = ϕ(C,FV(u)) and open u with respect to that name; we then perform the
recursive call on the opened udxe0. The full pretm rec is defined by recursion
on the height of the syntax tree of a pre-term, rather than structural recursion
on the pre-term, because not all the recursive calls are on a pre-term which is
structurally smaller than the one received in input (something that is beyond
the capabilities of the termination heuristics found in Matita):

let rec pretm rec aux (P : pretm ⇒ Type)
(C : list A) (fpar : ∀x.P (par x)) (fvar : ∀n.P (var n))
(fapp : ∀v1, v2.P v1⇒ P v2⇒ P (app v1 v2))
(fabs : ∀x, s, v.x /∈ FV v ⇒ x /∈ C ⇒ P (vdxe)⇒ P (abs s (νx.(vdxe))))
(h : N) u on h : (height(u) < h⇒ P u) , match h with

[0⇒ . . . (* absurd: height is always > 0 *)

|S h0 ⇒ let rcall , pretm rec aux P C fpar fvar fapp fabs h0 in
match u with
[par x⇒ λ .fpar x
|var n⇒ λ .fvar n
|app v1 v2 ⇒ λp.fapp . . . (rcall v1 . . . ) (rcall v2 . . . )

|abs σ v ⇒ let x , ϕ(C,FV(v)) in
fabs . . . (rcall (vdxe0) . . . )]]

pretm rec P C fpar fvar fapp fabs u ,
pretm rec aux P C fpar fvar fapp fabs (S height(u)) u . . .

The ellipses in pretm rec and in the app and abs cases of pretm rec aux must
be filled with proofs that the value provided for h is an upper bound to the
height of the term on which we are performing recursion (in our formalization,
those proofs were filled in interactively).

Since proper terms are a subset of pre-terms, expressing RΛ0
in terms of

pretm rec is conceptually simple, although in practice the related proofs are
technical, due to the handling of dependent types. The interested reader can
check the details of the proof in the formalization, within the module model.ma.

4 Intermezzo: formalizing typing rules

We now turn our attention to the formalization of more complex structures:
typing judgments and their derivations by means of inductive rules. We chose
the simply typed lambda-calculus as our setting, because even in its simplicity
some of the issues of the representation of binding are already quite visible.

Its formalization in the most common representations of binding is well un-
derstood. Most locally nameless formalizations employ the following concrete
introduction rule for lambda abstractions:



x /∈ FV (u)

〈x, σ〉, Γ ` u {var 0 7→ par x} : τ
(LN-T-Abs)

Γ ` abs σ u : σ → τ

where u {v 7→ v′} is a generalized substitution operator, replacing a subterm v in
u with v′, preserving scopes. Following [23], we call rules in this style “backward”,
as they are most easily read from the bottom upwards: if the term which we
intend to type can be deconstructed as abs σ u, then we should first get a typing
derivation for u in an extended typing environment. However, since unboxing
an abstraction yields a term where the index var 0 is possibly dangling, we are
supposed to substitute a fresh name x for it, which must also be used in the
extended context.

An alternative “forward” representation of the abstraction rule has a more
familiar look:

〈x, σ〉, Γ ` u : τ
(LN-T-Lam)

Γ ` Lam x σ u : σ → τ

In this case, the substitution is hidden inside the Lam operator: Lam x σ u is
syntactic sugar for abs σ u {par x 7→ var 0}. Although this rule is more pleasant
to read, in practice it is seldom used in formalizations because the associated
induction principle is more difficult to use, due to the fact that Lam is not a real
constructor: on the contrary, the algorithmic interpretation of the backward rule
is immediate, as we argued some lines above.

As it turns out, even if we formalize a type system by means of backward
rules, we get an induction principle which is weaker than what a formalizer ex-
pects. For example, suppose that we write a type checker for the simply typed
calculus: we can verify its soundness with respect to the formalized type sys-
tem (typechecking does not succeed for ill-typed terms) quite easily by induc-
tion; however verifying completeness (all well-typed terms typecheck success-
fully) turns out to be challenging for a naive formalizer.

As originally noted by McKinna and Pollack [15], the reason behind this
difficulty lies in the fact that the LN-T-Abs rule is quite liberal: x can be
any sufficiently fresh parameter. Given the typing judgment associated to an
abstraction, we get a different derivation for every choice of a suitable x. All
the derivations are isomorphic, but contain, so to say, a “hardcoded” parameter
name: in other words, when we view typing derivations as data structures, they
are not canonical.

The problem with typing derivations being not canonical is that, in a proof
by induction, the hardcoded fresh parameter x makes its return as part of the
induction hypothesis associated with the abstraction case:



∀P.
...
∀Γ, x, σ, u, τ.
x /∈ FV(u)⇒
〈x, σ〉, Γ ` u {var 0 7→ par x} : τ ⇒
P (〈x, σ〉, Γ, u {var 0 7→ par x} , τ) ⇒
P (Γ, abs σ u, σ → τ)

⇒
..
∀Γ, u, σ.Γ ` u : σ ⇒ P (Γ, u, σ)

However on many occasions we will need our induction hypothesis to refer
to an arbitrary y /∈ dom(Γ ) (or even all such ys).

We can force typing derivations to be canonical (independent of arbitrary
choices of parameter names) by means of a universally quantified premise:(

∀x.x /∈ dom(Γ ),FV(u)⇒
〈x, σ〉, Γ ` u {var 0 7→ par x} : τ)

)
(LN-T-Abs’)

Γ ` abs σ u : σ → τ

This yields a strong induction principle, where the induction hypothesis associ-
ated to the abstraction case is similarly quantified over all suitable xs. However,
the rule LN-T-Abs’ itself is actually weaker: to derive a typing judgment for
abstractions, one now needs to prove an infinite number of judgments, one for
every choice of x! This is not how typecheckers work and is thus usually not
considered a good formalization of a typing rule.

Still, it must be noted that all the rules presented in this section are equiv-
alent. In particular, it is possible to prove the “strong” induction principle for
a formalization using LN-T-Abs by showing that the typing judgment is equi-
variant, i.e. stable under arbitrary finite permutations of names π:

Γ ` u : σ ⇐⇒ ∀π.π · Γ ` π · u : σ

5 Ostensibly named representation of typing

We employ the ostensibly named style presented in Section 2 to express the type
system of the simply typed lambda calculus.

The typing rules, shown in Figure 1, look quite unremarkable. The rule ON-
T-Lam, in particular, looks the same as the rule LN-T-Lam of the previous
section, although in this case Lam is opaque and, more importantly, the rules
themselves must not be intended as the constructors of the concrete inductive
type of typing derivations, but as operations provided by the abstract data type
of typing derivations. We postpone the discussion about the internal represen-
tation of typing to the next section.

The ostensibly named induction principle we associate to these rules (Fig-
ure 2) is more interesting. The induction hypothesis of the lambda case (high-
lighted in the figure) is quantified over all suitable parameter names, as in a



〈x, σ〉 ∈ Γ dom(Γ ) is duplicate-free
(ON-T-Par)

Γ `O Par x : σ

〈x, σ〉, Γ `O u : τ
(ON-T-Lam)

Γ `O Lam x σ u : σ → τ

Γ `O u : σ → τ Γ `O v : σ
(ON-T-App)

Γ `O App u v : τ

Fig. 1. Typing rules for λ→, ostensibly named style.

∀P.
(∀Γ, x, σ.〈x, σ〉 ∈ Γ ⇒ P (Γ,Par x, σ))⇒

∀Γ, x, σ, u, τ.x /∈ dom(Γ ),FV(u)⇒
(∀y.y /∈ dom(Γ ),FV(u)⇒ 〈y, σ〉, Γ `O udye : τ)⇒
(∀y.y /∈ dom(Γ ),FV(u)⇒ P (〈y, σ〉, Γ, udye, τ)) ⇒
P (Γ, Lam x σ (udxe), σ → τ)

⇒
∀Γ, u, σ, τ.
Γ `O u : σ → τ ⇒ Γ `O v : σ ⇒
P (Γ, u, σ → τ)⇒ P (Γ, v, σ)⇒
P (Γ,App u v, τ)

⇒
∀Γ, u, σ.Γ `O u : σ ⇒ P (Γ, u, σ)

Fig. 2. Rule induction for the λ→ typing derivations, ostensibly named style.

strong principle; however, we use the variable opening operation, both in the
induction hypothesis and in the conclusion, to avoid exposing the internal struc-
ture of the terms. To prevent variable capture, the new names are chosen to be
fresh with respect to the context u being opened.

Ostensibly named inversion We can use the ostensibly named induction principle
to derive an inversion principle in the style of McBride ([14]). Together with
Lemma 2, inversion principles provide an effective tool to perform case analysis
on the last rule used in a derivation tree. The inversion principle we obtain
is strong (as in [6]) in the sense that, for instance, given a derivation of Γ `
Lam x σ (udxe) : σ → τ with x /∈ FV(u), we can deduce 〈y, σ〉, Γ ` udye : τ for
all y /∈ FV(u),dom(Γ ).

5.1 Internal representation of typing rules

As we argued in Section 4, the weak or strong induction principle dilemma, in the
context of typing, stems from the fact that the natural typing rules mentioning
a specific variable in the binder case, yield a plurality of derivations for the same



typing judgment; but to have a single derivation and thus a strong induction
principle, one has to employ an infinitary typing rule.

In essence, names are the origin of the dilemma: so it is just natural to look at
a de Bruijn formalization of the typing rules, shown in Figure 3. In the nameless
encoding, typing environments are just lists of types: we denote them as γ, γ′, . . ..

γ(n) = σ
(DB-T-Var)

γ `D var n : σ

σ, γ `D u : τ
(DB-T-Abs)

γ `D abs σ u : σ → τ

γ `D u : σ → τ γ `D v : σ
(DB-T-App)

γ `D app u v : τ

Fig. 3. Typing rules for λ→, pure de Bruijn style.

Since in this presentation no named parameter appears, context references
are by position (rule DB-T-Var, where γ(n) returns the n + 1-th type in γ).
In the abstraction rule, unboxing an abstraction yields, in the premise, a new
dangling index, whose type is referenced in an extended context.

The nice thing about going nameless is the following: the rule DB-T-Abs
is finitary (in fact, unary), but at the same time it is also canonical! For every
well-typed abstraction, there is exactly one derivation, because we do not have
the freedom of choosing any fresh name: in fact, we choose none. This desirable
situation comes from the fact that, in a nameless setting, not only abstractions,
but also the typing environment γ of the judgments and even the rule DB-T-Abs
are treated as binders.

These properties make the de Bruijn style rules, together with the associ-
ated induction principle (Figure 4), an ideal model for the abstract rules of the
previous section.

To model the ostensibly named presentation of λ→, we first need to interpret
`O in terms of `D. For this purpose, we give an interpretation of the ostensibly
named representations of types, typing environments, and terms into the corre-
sponding concepts of the de Bruijn representation. As usual, the interpretation
of types is the identity. For what concerns typing environments, all we need to
do is to throw away the names, keeping the types in the same order: this is best
done by projecting the second component of each pair in the list. Finally the
interpretation of terms is given by taking the interpretation we used in Section 3
and subsequently closing the obtained locally-nameless term with respect to the



∀P.
(∀γ, n, σ.γ(n) = σ ⇒ P (γ, var n, σ))⇒

∀γ, σ, u, τ.
σ, γ `D u : τ ⇒
P (σ, γ, u, τ)⇒
P (γ, abs σ u, σ → τ)

⇒


∀γ, u, σ, τ.
γ `D u : σ → τ ⇒ γ `D v : σ ⇒
P (γ, u, σ → τ)⇒ P (γ, v, σ)⇒
P (γ,App u v, τ)

⇒
∀γ, u, σ.γ `D u : σ ⇒ P (γ, u, σ)

Fig. 4. Rule induction for the λ→ typing derivations, de Bruijn style.

names in its typing context: assuming all the names referenced in the term have
an entry in the environment, the resulting interpretation is nameless. In symbols:

JσK , σ

JΓ K , cod(Γ )

JuK−→x , ν0
−→x .JuK

JΓ `O u : σK , df(dom(Γ )) ∧ JΓ K `D JuKdom(Γ ) : JσK

where:

dom([x1 : σ1; . . . ;xn : σn]) , [x1; . . . ;xn]

cod([x1 : σ1; . . . ;xn : σn]) , [σ1; . . . ;σn]

νk[x1; . . . ;xn].u , νkx1 . . . νkxn.u

The model of an ostensibly named judgment contains, in addition to its nameless
counterpart, a proof that the domain of Γ is duplicate-free (a property which we
expect to be able to prove, and which is not implied by the nameless judgment).
We have used the predicate df to assert that a certain list of names is duplicate-
free. The vector notation −→x is employed as a compact way of referring to lists,
in this case to a list of names. Our second task is to model the rules of Figure 1
as instances of their nameless counterparts. This is expressed by the following
lemma:

Lemma 11.

1. If 〈x, σ〉 ∈ Γ and dom(Γ ) is duplicate-free, then JΓ `O Par x : σK.
2. If J〈x, σ〉, Γ `O u : τK, then JΓ `O Lam x σ u : σ → τK.
3. If JΓ `O u : σ → τK and JΓ `O v : σK, then JΓ `O App u v : τK.

Finally, we provide an interpretation of the ostensibly named induction prin-
ciple as follows:

Theorem 12. Let P be a predicate over named typing environments, terms,
and types. Assume the following properties:



1. for all Γ ,x,σ, 〈x, σ〉 ∈ Γ implies P (Γ,Par x, σ);
2. for all Γ ,x,σ,u,τ such that

• x /∈ dom(Γ ),FV(u)
• ∀y.y /∈ dom(Γ ),FV(u)⇒ J〈y, σ〉, Γ `O udye : τK
• ∀y.y /∈ dom(Γ ),FV(u)⇒ P (〈y, σ〉, Γ, udye, τ)

then P (Γ, Lam x σ (udxe), σ → τ) holds;
3. for all Γ ,u,v,σ,τ such that

• JΓ `O u : σ → τK
• JΓ `O v : σK
• P (Γ, u, σ → τ)
• P (Γ, v, σ)

then P (Γ,App u v, τ).

Then for all Γ ,u,σ such that JΓ `O u : σK, P (Γ, u, σ) holds.

Proof (sketch). Assume JΓ `O u : σK. By definition, we know that the domain
of Γ is duplicate-free and that JΓ K `D JuKdom(Γ ) : σ.

Let P̂ be the augmented predicate:

P̂ (γ, u, σ) , ∀−−→x|γ|.df (−−→x|γ|)⇒ P (γd−−→x|γ|e, ud−−→x|γ|0e, σ)

where we have extended the definition of −d−e as follows:

[σ1; . . . ;σn]d[x1; . . . ;xn]e , [〈x1, σ1〉; . . . ; 〈xn, σn〉]

ud−→x ek ,

{
ud[]ek = u
udy,−→z ek = udyekd−→z ek

The notation |γ| indicates the length of the list γ. The extended vector no-
tation in the form −→xn is used to express lists of length n. We now proceed by
induction on JΓ K `D JuKdom(Γ ) : σ to prove P̂ (JΓ K, JuKdom(Γ ), σ). By instantiat-
ing the augmented predicate over the list dom(Γ ), we finally obtain P (Γ, u, σ)
(using lemma 10).

The most difficult part of the induction is the abstraction case:
given γ0, σ0, τ0, u0 and a duplicate free list of names −−→x|γ0|, we need to prove

P (γ0d−−→x|γ0|e, (abs σ0 u0)d−−→x|γ0|e, σ0 → τ0)

under the hypotheses
σ0, γ0 `D u0 : τ0
P̂ (σ0, γ0, u0, τ0)

where the latter is the induction hypothesis. Then we take a fresh name y and
rewrite in the thesis

(abs σ0 u0)d−−→x|γ0|e
= abs σ0 (u0d−−→x|γ0|e1)
= Lam y σ0 (u0d−−→x|γ0|e1dye)

This allows us to apply the second lemma hypothesis (to fulfill the guards of the
hypothesis, we exploit the equality u0d−−→x|γ0|e1dye = u0dy,−−→x|γ0|e).



6 Beta reduction

The ostensibly named technique we used in the previous section to define typing
judgments extends to other types of judgments. The trick is to make explicit
the environment where all the free parameters appearing in the judgment are
defined. Other than that, we axiomatize reduction rules that are close to informal
syntax (Fig. 5). These introduction rules are completed by a strong induction
principle, providing a universally quantified induction hypothesis for the case
where reduction happens under a lambda (Fig. 6).

−→x is duplicate-free FV(App (Lam y σ u) v) ⊆ −→x
(ON-B-Red)−→x `O App (Lam y σ u) v . u [v/y]

−→x `O u . u′ FV(v) ⊆ −→x
(ON-B-App1)−→x `O App u v . App u′ v

−→x `O v . v′ FV(u) ⊆ −→x
(ON-B-App2)−→x `O App u v . App u v′

y,−→x `O u . u′
(ON-B-Xi)−→x `O Lam y σ u . Lam y σ u′

Fig. 5. Beta reduction: ostensibly named encoding

∀P. ∀−→x , y, σ, u, v.df (−→x )⇒
FV(App (Lam y σ u) v) ⊆ −→x ⇒
P (−→x ,App (Lam y σ u) v, u [v/y])

⇒ ∀−→x , u, u′, v.FV(v) ⊆ −→x ⇒
−→x `O u . u′ ⇒ P (−→x , u, u′)⇒
P (−→x ,App u v,App u′ v)

⇒ ∀−→x , u, v, v′.FV(u) ⊆ −→x ⇒
−→x `O v . v′ ⇒ P (−→x , v, v′)⇒
P (−→x ,App u v,App u v′)

⇒
∀−→x , y, σ, u, u′.y /∈ −→x ,FV(u),FV(u′)⇒

(∀z.z /∈ −→x ,FV(u),FV(u′)⇒ z,−→x `O udze . u′dze)⇒
(∀z.z /∈ −→x ,FV(u),FV(u′)⇒ P (z,−→x , udze, u′dze)) ⇒
P (−→x , Lam y σ (udye), Lam y σ (u′dye))

⇒
∀−→x , u, u′.−→x `O u . u′ ⇒ P (−→x , u, u′)

Fig. 6. Induction principle for beta reduction: ostensibly named encoding.



6.1 De Bruijn model of beta reduction

A de Bruijn-style model of beta reduction is given in Figure 7. The main differ-
ence with the ostensibly named rules is that the list of free parameters is replaced
by an integer stating the number of dangling indices possibly appearing in the
judgment. Thus we define the interpretation of an ostensibly named reduction
as:

J−→xk `O u . vK , k `D JuK−→xk
. JvK−→xk

All the preterms involved in the de Bruijn judgment must be contexts of a
suitable arity containing no parameters. When this property is not implied by
a recursive premise of a rule, we have to specify it as an extra premise: for this
purpose, we use the notation

k `D u ok , check tm u k = true ∧ FV(u) = ∅

y,−→xk is duplicate-free k `D app (abs σ u) v ok
(DB-B-Red)

k `D app (abs σ u) v . Judy,−→xke [vd
−→xke/y]K−→xk

k `D u . u′ k `D v ok
(DB-B-App1)

k `D app u v . app u′ v

k `D v . v′ k `D u ok
(DB-B-App2)

k `D app u v . app u v′

k + 1 `D u . u′
(DB-B-Xi)

k `D abs σ u . abs σ u′

Fig. 7. Beta reduction: de Bruijn encoding

While most other adaptations are trivial, rule DB-B-Red is slightly upset-
ting: de Bruijn terms u and v are opened in an arbitrary environment to become
ostensibly named terms; then we use ostensibly named substitution and finally
convert the result back to a de Bruijn term. This round-trip is entirely unnec-
essary if we define a substitution operation on de Bruijn terms; however for
our purpose – justifying the ostensibly named rules and induction principle –
this is not required: thus we decided not to bother dealing with two notions of
substitution and their equivalence.

The following properties show that the de Bruijn rules are a model of the
ostensibly named rules. Their proofs are similar to those relative to the typing
judgment.



Lemma 13.

1. If −→x is duplicate-free and FV(App (Lam y σ u) v) ⊆ −→x then J−→x `O
App (Lam y σ u) v . u [v/y]K.

2. If J−→x `O u . u′K and FV(v) ⊆ −→x then J−→x `O App u v . App u′ vK.
3. If J−→x `O v . v′K and FV(u) ⊆ −→x then J−→x `O App u v . App u v′K.
4. If Jy,−→x `O u . u′K then J−→x `O Lam y σ u . Lam y σ u′)K.

Theorem 14. Let P be a predicate over named lists of variable names and pairs
of terms. Assume the following properties:

1. for all −→x ,y,σ,u,v such that −→x is duplicate-free, FV(App (Lam y σ u) v) ⊆ −→x
implies P (−→x ,App (Lam y σ u) v, u [v/y]);

2. for all −→x ,u,u′,v such that
• FV(v) ⊆ −→x
• J−→x ` u . u′K
• P (−→x , u, u′)

then P (−→x ,App u v,App u′ v) holds;
3. for all −→x ,u,v,v′ such that

• FV(u) ⊆ −→x
• J−→x ` v . v′K
• P (−→x , v, v′)

then P (−→x ,App u v,App u v′) holds;
4. for all −→x ,y,σ,u,u′ such that

• y /∈ −→x ,FV(u),FV(u′);
• ∀z.z /∈ −→x ,FV(u),FV(u′)⇒ Jy,−→x `O udze . u′dzeK
• ∀z.z /∈ −→x ,FV(u),FV(u′)⇒ P (y,−→x , udze, u′dze)

then P (−→x , Lam y σ (udye), Lam y σ, u′dye) holds;

Then for all −→x ,u,u′ such that J−→x `O u . u′K, P (−→x , u, u′) holds.

6.2 Some formalized results

The machinery we have presented in the previous sections is all we need to
prove metatheoretical properties of λ→ such as weakening of typing judgments
and subject reduction.

Theorem 15 (weakening of typing). If Γ `O u : σ and Γ ⊆ ∆, then ∆ `O
u : σ.

Proof. Routine induction on the derivation of Γ `O u : σ, closely resembling
the corresponding proof in a locally nameless setting. This is remarkable when
considering that the underlying implementation of our typing judgments uses a
pure nameless approach: normally, a proof of weakening in a nameless setting
requires relatively complex arguments about lifting and permutations of indices
and typing environments. Such unnecessary technicalities are completely hidden
in our proof because the ostensibly named approach allows for a more adequate
degree of abstraction.



Lemma 16 (substitutivity of typing). If ∆, 〈x, σ〉, Γ `O u : τ and Γ `O v :
σ, then ∆,Γ `O u [v/x] : τ .

Theorem 17 (preservation of typing). If Γ `O u : σ and dom(Γ ) `O u.u′,
then Γ `O u′ : σ.

Proof. We proceed by induction on the derivation of Γ ` u : σ, followed, for
each case, by an inversion on the reduction judgment. These are the interesting
cases:

– ON-T-App and ON-B-Red: we have u = App (Lam x σ0 u0) v0, u′ =
u0 [v0/x] and σ = σ0 → τ0, and we also know that Γ `O Lam x σ0 u0 : σ0 →
τ0 and Γ `O v0 : σ0; we must prove Γ `O u0 [v0/x]. By inversion we obtain
z,u1 such that z /∈ FV(u1),dom(Γ ), Lam σ0 x u0 = Lam z σ0 (u1dze) and
〈z : σ0〉, Γ ` u1dze : τ0 (this implies u1dze = u0 〈z/x〉); thus, by Lemma 16
we get Γ `O u1dze [v/z]; it is then easy to prove u1dze [v/z] = u0 〈z/x〉 [v/z] =
u0 [v/x], as needed.

– ON-T-Lam and ON-B-Xi: we have u = Lam x σ0 (u0dxe),
u′ = Lam y σ0 (u′0dye) and σ = σ0 → τ0, where x /∈ dom(Γ ),FV(u0) and
y /∈ dom(Γ ),FV(u0),FV(u′0), and we also know that dom(〈y, σ0〉, Γ ) `O
u0dye . u′0dye. By induction hypothesis, for all z /∈ dom(Γ ),FV(u0), for all
u′′ such that dom(〈z, σ〉, Γ ) ` u0dze .u′′, we have 〈z, σ0〉, Γ `O u′′ : τ0; thus,
by taking z = y and u′′ = u′0dye, we have 〈y, σ0〉, Γ `O u′0dye : τ0. From this
we immediately derive Γ `O Lam y σ0 (u′0dye) : σ0 → τ0, as needed.

Theorem 18 (progress). If `O u : σ and u is not a value (i.e. it is not in the
form Lam x τ v), then there exists u′ such that `O u . u′.

Proof. By induction on u. By hypothesis, u is not a Lam abstraction and, since
it is well typed in the empty environment, it is not a Par either. Therefore, we
have u = App u1 u2. By inversion of typing, we also know that `O u1 : τ → σ
and `O u2 : τ , for some type τ . Then:

– if u1 is in the form Lam y τ u′1, we have a redex: we can take u′ = u′1 [u2/y]
and obtain the thesis by rule ON-B-Red;

– otherwise u1 is not a value and by induction hypothesis there exists a u′1
such that `O u1 . u

′
1: then we can take u′ = App u′1 u2 and obtain the thesis

by rule ON-B-App1 (the side condition about the free variables of u2 is
easily closed knowing that u2 is well typed in the empty environment).

7 Conclusions

In this paper we have presented an ostensibly named abstract data type for the
formalization of languages with binding, which enables the user of an interactive
theorem prover to only deal with familiar concepts like named binders and terms
with holes. Our work can be likened to other axiomatic or abstract approaches
([11,19,21] just to list a few). While other authors have focused especially on



the representation of terms and recursively defined functions, our technique ex-
tends to inductively defined judgments. In the representation of judgments, an
important role is played by our ability to express contexts (terms with holes).

To show the soundness of our axiomatization, we provided and fully formal-
ized a constructive model employing de Bruijn indices. The term language of
the model is locally nameless, with non-locally closed terms used to represent
contexts. Judgments, instead, are represented in a pure de Bruijn fashion. Since
the model is formalized, we retain the possibility of extracting code from all the
definitions and proofs based on the ostensibly named ADT.

Even though our internal representation of binding structures employs name-
less dummies, other models are possible as long as they are canonical, the most
obvious alternatives being the canonical locally named representation [17] and
nested datatypes [7]. However, users do not need to worry about this, since they
only deal with an abstract data type that does not expose such inner details.

In the long run, every representation of binding should be expected to scale
up to dependently-typed object languages with generalized binders (i.e. binders
declaring multiple variables simultaneously) and possibly other complex oper-
ations. The system λ→ that we formalized does not include dependent types;
however multiple binders are part of our formalization, if only in the constrained
form of typing judgments. Other recent efforts to accomodate generalized bind-
ing have been made in the context of Nominal Isabelle [12,26]. Among the biggest
challenges in the formalization of binding, we include languages combining gener-
alized binding with dependent types and hereditary substitution ([1]). In practice
formalizations of such rich languages are attempted rarely and require non-trivial
adaptations; however, it is with complex languages that abstract approaches like
ours give the most ample benefits. For this reason, we are working on an exten-
sion of ostensibly named syntax to languages with signatures expressed in a
generic way, in the style of [2].

In perspective, the ostensibly named approach seems to enjoy very desirable
properties that would recommend its adoption as an alternative to more estab-
lished techniques. These properties, however, come at a cost: without the help
of automated tools, the burden of providing two formalization levels (concrete
nameless and abstract ostensibly named) together with the associated proofs,
will scare away most formalizers. Secondly, abstract recursion principles whose
computational behaviour is expressed by an equational theory are not as conve-
nient as the concrete ones available for inductive types. Lastly, defining recursive
functions as instances of a recursion principle is quite unusual and can be tricky,
although syntactic sugar can be used to make definitions more readable.

Such drawbacks could be greatly mitigated, if not completely eliminated, by
means of specialized tool support. For this purpose, we plan to investigate in
the future whether it is feasible to produce the overhead to an ostensibly named
formalization programmatically from a declarative specification of a language
with binding (similarly to what tools like DBgen [18] and LNgen [4] provide for
pure de Bruijn and locally nameless formalizations). Taking advantage of recent
works on specialized automation tactics for concrete encodings of binding (e.g.



Autosubst [24]), we will also study the design of tactics and syntactic constructs
to allow interactive theorem provers to present ostensibly named interfaces al-
most as if they were inductive types, automating computation of recursively
defined functions and allowing definitions by pattern matching.
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