1,767 research outputs found

    Reconstruction of a random phase dynamics network from observations

    Full text link
    We consider networks of coupled phase oscillators of different complexity: Kuramoto-Daido-type networks, generalized Winfree networks, and hypernetworks with triple interactions. For these setups an inverse problem of reconstruction of the network connections and of the coupling function from the observations of the phase dynamics is addressed. We show how a reconstruction based on the minimization of the squared error can be implemented in all these cases. Examples include random networks with full disorder both in the connections and in the coupling functions, as well as networks where the coupling functions are taken from experimental data of electrochemical oscillators. The method can be directly applied to asynchronous dynamics of units, while in the case of synchrony, additional phase resettings are necessary for reconstruction

    Phase synchronization in time-delay systems

    Get PDF
    Though the notion of phase synchronization has been well studied in chaotic dynamical systems without delay, it has not been realized yet in chaotic time-delay systems exhibiting non-phase coherent hyperchaotic attractors. In this article we report the first identification of phase synchronization in coupled time-delay systems exhibiting hyperchaotic attractor. We show that there is a transition from non-synchronized behavior to phase and then to generalized synchronization as a function of coupling strength. These transitions are characterized by recurrence quantification analysis, by phase differences based on a new transformation of the attractors and also by the changes in the Lyapunov exponents. We have found these transitions in coupled piece-wise linear and in Mackey-Glass time-delay systems.Comment: 4 pages, 3 Figures (To appear in Physical Review E Rapid Communication

    Pattern Formation Induced by Time-Dependent Advection

    Full text link
    We study pattern-forming instabilities in reaction-advection-diffusion systems. We develop an approach based on Lyapunov-Bloch exponents to figure out the impact of a spatially periodic mixing flow on the stability of a spatially homogeneous state. We deal with the flows periodic in space that may have arbitrary time dependence. We propose a discrete in time model, where reaction, advection, and diffusion act as successive operators, and show that a mixing advection can lead to a pattern-forming instability in a two-component system where only one of the species is advected. Physically, this can be explained as crossing a threshold of Turing instability due to effective increase of one of the diffusion constants

    Microscopic Cross-Correlations in the Finite-Size Kuramoto Model of Coupled Oscillators

    Full text link
    Super-critical Kuramoto oscillators with distributed frequencies separate into two disjoint groups: an ordered one locked to the mean field, and a disordered one consisting of effectively decoupled oscillators -- at least so in the thermodynamic limit. In finite ensembles, in contrast, such clear separation fails: The mean field fluctuates due to finite-size effects and thereby induces order in the disordered group. To our best knowledge, this publication is the first to reveal such an effect, similar to noise-induced synchronization, in a purely deterministic system. We start by modeling the situation as a stationary mean field with additional white noise acting on a pair of unlocked Kuramoto oscillators. An analytical expression shows that the cross-correlation between the two increases with decreasing ratio of natural frequency difference and noise intensity. In a deterministic finite Kuramoto model, the strength of the mean field fluctuations is inextricably linked to the typical natural frequency difference. Therefore, we let a fluctuating mean field, generated by a finite ensemble of active oscillators, act on pairs of passive oscillators with a microscopic natural frequency difference between which we then measure the cross-correlation, at both super- and sub-critical coupling.Comment: 7 page

    Langevin approach to synchronization of hyperchaotic time-delay dynamics

    Full text link
    In this paper, we characterize the synchronization phenomenon of hyperchaotic scalar non-linear delay dynamics in a fully-developed chaos regime. Our results rely on the observation that, in that regime, the stationary statistical properties of a class of hyperchaotic attractors can be reproduced with a linear Langevin equation, defined by replacing the non-linear delay force by a delta-correlated noise. Therefore, the synchronization phenomenon can be analytically characterized by a set of coupled Langevin equations. We apply this formalism to study anticipated synchronization dynamics subject to external noise fluctuations as well as for characterizing the effects of parameter mismatch in a hyperchaotic communication scheme. The same procedure is applied to second order differential delay equations associated to synchronization in electro-optical devices. In all cases, the departure with respect to perfect synchronization is measured through a similarity function. Numerical simulations in discrete maps associated to the hyperchaotic dynamics support the formalism.Comment: 12 pages, 6 figure

    Solitary synchronization waves in distributed oscillators populations

    Full text link
    We demonstrate existence of solitary waves of synchrony in one-dimensional arrays of identical oscillators with Laplacian coupling. Coarse-grained description of the array leads to nonlinear equations for the complex order parameter, in the simplest case to lattice equations similar to those of the discrete nonlinear Schrodinger lattice. Close to full synchrony, we find solitary waves for the order parameter perturbatively, starting from the known phase compactons and kovatons; these solution are extended numerically to the full domain of possible synchrony levels. For non-identical oscillators, existence of dissipative solitons is demonstrated.Comment: 5 pages, 6 figure

    Synchronization in driven versus autonomous coupled chaotic maps

    Full text link
    The phenomenon of synchronization occurring in a locally coupled map lattice subject to an external drive is compared to the synchronization process in an autonomous coupled map system with similar local couplings plus a global interaction. It is shown that chaotic synchronized states in both systems are equivalent, but the collective states arising after the chaotic synchronized state becomes unstable can be different in these two systems. It is found that the external drive induces chaotic synchronization as well as synchronization of unstable periodic orbits of the local dynamics in the driven lattice. On the other hand, the addition of a global interaction in the autonomous system allows for chaotic synchronization that is not possible in a large coupled map system possessing only local couplings.Comment: 4 pages, 3 figs, accepted in Phys. Rev.
    corecore