2,723 research outputs found

    Lipschitz normal embedding among superisolated singularities

    Get PDF
    Any germ of a complex analytic space is equipped with two natural metrics: the outer metric induced by the hermitian metric of the ambient space and the inner metric, which is the associated riemannian metric on the germ. A complex analytic germ is said Lipschitz normally embedded (LNE) if its outer and inner metrics are bilipschitz equivalent. LNE seems to be fairly rare among surface singularities; the only known LNE surface germs outside the trivial case (straight cones) are the minimal singularities. In this paper, we show that a superisolated hypersurface singularity is LNE if and only if its projectivized tangent cone has only ordinary singularities. This provides an infinite family of LNE singularities which is radically different from the class of minimal singularities

    On the kinematic deconvolution of the local neighbourhood luminosity function

    Get PDF
    A method for inverting the statistical star counts equation, including proper motions, is presented; in order to break the degeneracy in that equation it uses the supplementary constraints required by dynamical consistency. The inversion gives access to both the kinematics and the luminosity function of each population in three r\'egimes: the singular ellipsoid, the constant ratio Schwarzschild ellipsoid plane parallel models and the epicyclic model. This more realistic model is taylored to account for local neighbourhood density and velocity distribution. The first model is fully investigated both analytically and via means of a non-parametric inversion technique, while the second model is shown to be formally its equivalent. The effect of noise and incompleteness in apparent magnitude is investigated. The third model is investigated via a 5D+2D non-parametric inversion technique where positivity of the underlying luminosity function is explicitely accounted for. It is argued that its future application to data such as the Tycho catalogue (and in the upcoming satellite GAIA) could lead -- provided the vertical potential, and/or the asymmetric drift or w_0 are known -- to a non-parametric determination of the local neighbourhood luminosity function without any reference to stellar evolution tracks. It should also yield the proportion of stars for each kinematic component and a kinematic diagnostic to split the thin disk from the thick disk or the halo.Comment: 18 pages, LateX (or Latex, etc), mnras, accepted for publicatio

    Non Gaussian extrema counts for CMB maps

    Full text link
    In the context of the geometrical analysis of weakly non Gaussian CMB maps, the 2D differential extrema counts as functions of the excursion set threshold is derived from the full moments expansion of the joint probability distribution of an isotropic random field, its gradient and invariants of the Hessian. Analytic expressions for these counts are given to second order in the non Gaussian correction, while a Monte Carlo method to compute them to arbitrary order is presented. Matching count statistics to these estimators is illustrated on fiducial non-Gaussian "Planck" data.Comment: 4 pages, 1 figur

    Massive spheroids can form in single minor mergers

    Get PDF
    Accepted for publication in MNRAS, 12 pages, 6 figuresUnderstanding how rotationally supported discs transform into dispersion-dominated spheroids is central to our comprehension of galaxy evolution. Morphological transformation is largely merger-driven. While major mergers can efficiently create spheroids, recent work has highlighted the significant role of other processes, like minor mergers, in driving morphological change. Given their rich merger histories, spheroids typically exhibit large fractions of ‘ex situ’ stellar mass, i.e. mass that is accreted, via mergers, from external objects. This is particularly true for the most massive galaxies, whose stellar masses typically cannot be attained without a large number of mergers. Here, we explore an unusual population of extremely massive (M ∗ > 10 11M) spheroids, in the Horizon-AGN simulation, which exhibit anomalously low ex situ mass fractions, indicating that they form without recourse to significant merging. These systems form in a single minor-merger event (with typical merger mass ratios of 0.11–0.33), with a specific orbital configuration, where the satellite orbit is virtually co-planar with the disc of the massive galaxy. The merger triggers a catastrophic change in morphology, over only a few hundred Myr, coupled with strong in situ star formation. While this channel produces a minority (∼5 per cent) of such galaxies, our study demonstrates that the formation of at least some of the most massive spheroids need not involve major mergers – or any significant merging at all – contrary to what is classically believed.Peer reviewedFinal Accepted Versio

    Stellar Content from high resolution galactic spectra via Maximum A Posteriori

    Full text link
    This paper describes STECMAP (STEllar Content via Maximum A Posteriori), a flexible, non-parametric inversion method for the interpretation of the integrated light spectra of galaxies, based on synthetic spectra of single stellar populations (SSPs). We focus on the recovery of a galaxy's star formation history and stellar age-metallicity relation. We use the high resolution SSPs produced by PEGASE-HR to quantify the informational content of the wavelength range 4000 - 6800 Angstroms. A detailed investigation of the properties of the corresponding simplified linear problem is performed using singular value decomposition. It turns out to be a powerful tool for explaining and predicting the behaviour of the inversion. We provide means of quantifying the fundamental limitations of the problem considering the intrinsic properties of the SSPs in the spectral range of interest, as well as the noise in these models and in the data. We performed a systematic simulation campaign and found that, when the time elapsed between two bursts of star formation is larger than 0.8 dex, the properties of each episode can be constrained with a precision of 0.04 dex in age and 0.02 dex in metallicity from high quality data (R=10 000, signal-to-noise ratio SNR=100 per pixel), not taking model errors into account. The described methods and error estimates will be useful in the design and in the analysis of extragalactic spectroscopic surveys.Comment: 31 pages, 23 figures, accepted for publication in MNRA

    Propagators in Lagrangian space

    Full text link
    It has been found recently that propagators, e.g. the cross-correlation spectra of the cosmic fields with the initial density field, decay exponentially at large-k in an Eulerian description of the dynamics. We explore here similar quantities defined for a Lagrangian space description. We find that propagators in Lagrangian space do not exhibit the same properties: they are found not to be monotonic functions of time, and to track back the linear growth rate at late time (but with a renormalized amplitude). These results have been obtained with a novel method which we describe alongside. It allows the formal resummation of the same set of diagrams as those that led to the known results in Eulerian space. We provide a tentative explanation for the marked differences seen between the Eulerian and the Lagrangian cases, and we point out the role played by the vorticity degrees of freedom that are specific to the Lagrangian formalism. This provides us with new insights into the late-time behavior of the propagators.Comment: 14 pages, 5 figure

    Polar exploration of complex surface germs

    Get PDF
    We prove that the topological type of a normal surface singularity pX, 0q provides finite bounds for the multiplicity and polar multiplicity of pX, 0q, as well as for the combinatorics of the families of generic hyperplane sections and of polar curves of the generic plane projections of pX, 0q. A key ingredient in our proof is a topological bound of the growth of the Mather discrepancies of pX, 0q, which allows us to bound the number of point blowups necessary to achieve factorization of any resolution of pX, 0q through its Nash transform. This fits in the program of polar explorations, the quest to determine the generic polar variety of a singular surface germ, to which the final part of the paper is devoted
    corecore