42 research outputs found

    Simultaneous solution of Kompaneets equation and Radiative Transfer equation in the photon energy range 1 - 125 KeV

    Full text link
    Radiative transfer equation in plane parallel geometry and Kompaneets equation is solved simultaneously to obtain theoretical spectrum of 1-125 KeV photon energy range. Diffuse radiation field is calculated using time-independent radiative transfer equation in plane parallel geometry, which is developed using discrete space theory (DST) of radiative transfer in a homogeneous medium for different optical depths. We assumed free-free emission and absorption and emission due to electron gas to be operating in the medium. The three terms n,n2n, n^2 and (∂n∂xk)\displaystyle \bigg({\frac {\partial n}{\partial x_k}}\bigg) where nn is photon phase density and xk=(hνkTe)\displaystyle x_k= \bigg({\frac {h \nu} {k T_e}} \bigg) , in Kompaneets equation and those due to free-free emission are utilized to calculate the change in the photon phase density in a hot electron gas. Two types of incident radiation are considered: (1) isotropic radiation with the modified black body radiation IMBI^{MB} [1] and (2) anisotropic radiation which is angle dependent. The emergent radiation at τ=0\tau=0 and reflected radiation τ=τmax\tau=\tau_{max} are calculated by using the diffuse radiation from the medium. The emergent and reflected radiation contain the free-free emission and emission from the hot electron gas. Kompaneets equation gives the changes in photon phase densities in different types of media. Although the initial spectrum is angle dependent, the Kompaneets equation gives a spectrum which is angle independent after several Compton scattering times.Comment: 31 pages, 8 figures, Accepte

    Sunyaev-Zel'dovich Effect by Multiple Sctattering : Numerical Solution of the Transfer Equations

    Full text link
    The radiative transfer equations for multiple inverse Compton scattering of the Cosmic Microwave Background Radiation (CMBR) by the hot intra-cluster electrons are solved numerically. The spherical isothermal and inhomogeneous β\beta model has been considered for the electron distribution. The anisotropy of the CMBR caused by scattering, known as thermal Sunyaev-Zel'dovich effect, along the radial axis of the medium is compared with the analytical solution of Kompaneets equation. The X-ray data of several clusters of galaxies at low redshifts provide an estimation of the central electron density n0n_0 to be of the order 10−310^{-3}. It is found that for this value of n0n_0 the effect of multiple scattering is negligible. The numerically calculated anisotropy along the radial axis matches well with the analytical solution that describes single scattering. The result incorporating multiple scattering is fitted with the recent observation of Sunyaev-Zel'dovich effect in the cluster Abell 2163. It is shown that if n0n_0 is greater by an order of magnitude, which could be possible for cluster of galaxies at comparatively higher redshift, multiple scattering would play a significant role at the Wien region of the anisotropy spectrum. A fitting formula for the correction to the Sunyaev-Zel'dovich effect due to multiple scattering is provided.Comment: 9 pages, Latex, ws-ijmpa style (cls file included), 3 postscript figures, Accepted for publication by International Journal of Modern Physics

    A method to simulate inhomogeneously irradiated objects with a superposition of 1D models

    Full text link
    In close binary systems the atmosphere of one or both components can be significantly influenced by irradiation from the companion. Often the irradiated atmosphere is simulated with a single-temperature approximation for the entire half-sphere. We present a scheme to take the varying irradiation angle into account by combining several separate 1D models. This is independent of the actual code which provides the separate stellar spectra. We calculate the projected area of zones with given irradiation angle and use this geometrical factor to scale separate 1D models. As an example we calculate two different irradiation scenarios with the PHOENIX code. The scheme to calculate the projected area is applicable independent of the physical mechanism that forms these zones. In the case of irradiation by a primary with T=125000 K, the secondary forms ions at different ionisation states for different irradiation angles. No single irradiation angle exists which provides an accurate description of the spectrum. We show a similar simulation for weaker irradiation, where the profile of the Hα\alpha line depends on the irradiation angle.Comment: published in A&

    Periodic variable stars in CoRoT field LRa02 observed with BEST II

    Full text link
    The Berlin Exoplanet Search Telescope II (BEST II) is a small wide field-of-view photometric survey telescope system located at the Observatorio Cerro Armazones, Chile. The high duty cycle combined with excellent observing conditions and millimagnitude photometric precision makes this instrument suitable for ground based support observations for the CoRoT space mission. Photometric data of the CoRoT LRa02 target field collected between November 2008 and March 2009 were analysed for stellar variability. The presented results will help in the future analysis of the CoRoT data, particularly in additional science programs related to variable stars. BEST II observes selected CoRoT target fields ahead of the space mission. The photometric data acquired are searched for stellar variability, periodic variable stars are identified with time series analysis of the obtained stellar light curves. We obtained the light curves of 104335 stars in the CoRoT LRa02 field over 41 nights. Variability was detected in light curves of 3726 stars of which 350 showed a regular period. These stars are, with the exception of 5 previously known variable stars, new discoveries.Comment: The figures with light curves can be find in the A&A journal as online onl

    A circular polarimeter for the Cosmic Microwave Background

    Full text link
    A primordial degree of circular polarization of the Cosmic Microwave Background is not observationally excluded. The hypothesis of primordial dichroism can be quantitatively falsified if the plasma is magnetized prior to photon decoupling since the initial V-mode polarization affects the evolution of the temperature fluctuations as well as the equations for the linear polarization. The observed values of the temperature and polarization angular power spectra are used to infer constraints on the amplitude and on the spectral slope of the primordial V-mode. Prior to photon decoupling magnetic fields play the role of polarimeters insofar as they unveil the circular dichroism by coupling the V-mode power spectrum to the remaining brightness perturbations. Conversely, for angular scales ranging between 4 deg and 10 deg the joined bounds on the magnitude of circular polarization and on the magnetic field intensity suggest that direct limits on the V-mode power spectrum in the range of 0.01 mK could directly rule out pre-decoupling magnetic fields in the range of 10-100 nG. The frequency dependence of the signal is located, for the present purposes, in the GHz range.Comment: 28 pages, 12 included figures
    corecore