302 research outputs found

    Photosynthesis, yield, energy balance, and water-use of intercropped maize and soybean

    Get PDF
    By 2050, the U.S. Corn Belt will likely face a 23% increase in leaf-to-air vapor pressure deficit (VPDL), the driving force of evapotranspiration (ET), which may restrict maize yield improvements for rainfed agroecosystems. Alternative cropping systems, such as maize and legume intercrops, have previously demonstrated yield and resource-use advantages over monocultures. In this study, the residual energy balance approach was used to gain insights into how an additive simultaneous maize and soybean intercrop system regulates ET and water-use efficiency (WUE) compared to standard maize and soybean monoculture systems of the U.S. Corn Belt. Experimental field plots were rain-fed and arranged in a randomized complete block design in three blocks. Photosynthetic capacity and grain yield of maize were conserved in the intercrop. However, its competitive dominance shaded 80%–90% of incident light for intercropped soybean at canopy closure, leading to a 94% decrease in grain yield compared to soybean monoculture. The total grain yield per unit area of the additive intercrop (land-use efficiency) increased by 11% ± 6% (1 SE). Compared to maize monoculture, the intercrop had higher latent heat fluxes (λET) at night but lower daytime λET as the intercrop canopy surface temperature was approximately.25°C warmer, partitioning more energy to sensible heat flux. However, the diel differences in λET fluxes were not sufficient to establish a statistically significant or biologically relevant decrease in seasonal water-use (ΣET). Likewise, the increase in land-use efficiency by the intercrop was not sufficient to establish an increase in seasonal water-use efficiency. Intercropping high-performing maize and soybean cultivars in a dense configuration without negative impact suggests that efforts to increase yield and WUE may lead to improved benefits

    Human gene copy number spectra analysis in congenital heart malformations

    Get PDF
    The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency “spectra” to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways

    Impact of \u3cem\u3eMYH6\u3c/em\u3e Variants in Hypoplastic Left Heart Syndrome

    Get PDF
    Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease (CHD). Although prior studies suggest that HLHS has a complex genetic inheritance, its etiology remains largely unknown. The goal of this study was to characterize a risk gene in HLHS and its effect on HLHS etiology and outcome. We performed next-generation sequencing on a multigenerational family with a high prevalence of CHD/HLHS, identifying a rare variant in the α-myosin heavy chain (MYH6) gene. A case-control study of 190 unrelated HLHS subjects was then performed and compared with the 1000 Genomes Project. Damaging MYH6 variants, including novel, missense, in-frame deletion, premature stop, de novo, and compound heterozygous variants, were significantly enriched in HLHS cases (P \u3c 1 × 10−5). Clinical outcomes analysis showed reduced transplant-free survival in HLHS subjects with damaging MYH6 variants (P \u3c 1 × 10−2). Transcriptome and protein expression analyses with cardiac tissue revealed differential expression of cardiac contractility genes, notably upregulation of the β-myosin heavy chain (MYH7) gene in subjects with MYH6 variants (P \u3c 1 × 10−3). We subsequently used patient-specific induced pluripotent stem cells (iPSCs) to model HLHS in vitro. Early stages of in vitro cardiomyogenesis in iPSCs derived from two unrelated HLHS families mimicked the increased expression of MYH7 observed in vivo (P \u3c 1 × 10−2), while revealing defective cardiomyogenic differentiation. Rare, damaging variants in MYH6 are enriched in HLHS, affect molecular expression of contractility genes, and are predictive of poor outcome. These findings indicate that the etiology of MYH6-associated HLHS can be informed using iPSCs and suggest utility in future clinical applications

    An amphitropic cAMP-binding protein in yeast mitochondria

    Get PDF
    ABSTRACT: We describe the first example of a mitochondrial protein with a covalently attached phos-phatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the yeast Saccharomyces cereuisiae and tightly associated with the inner mitochondrial membrane. However, it is converted into a soluble form during incubation of isolated mitochondria with Ca2+ and phospholipid (or lipid derivatives). This transition requires the action of a proteinaceous, N-ethylmaleimide-sensitive component of the intermembrane space and is accompanied by a decrease in the lipophilicity of the cAMP receptor. We propose that the component of the intermembrane space triggers the amphitropic behavior of the mitochondrial lipid-modified CAMP-binding protein through a phospholipase activity. Only in recent years specific fatty acids have been recog-nized to play important roles in the association of proteins with membranes. Both noncovalent and covalent interactions be-tween fatty acids and proteins have been reported. Among the latter are GTP-binding proteins (Molenaar et al., 1988)

    Erk1/2 MAP kinases are required for epidermal G2/M progression

    Get PDF
    Erk1/2 mitogen-activated protein kinases (MAPKs) are often hyperactivated in human cancers, where they affect multiple processes, including proliferation. However, the effects of Erk1/2 loss in normal epithelial tissue, the setting of most extracellular signal-regulated kinase (Erk)–associated neoplasms, are unknown. In epidermis, loss of Erk1 or Erk2 individually has no effect, whereas simultaneous Erk1/2 depletion inhibits cell division, demonstrating that these MAPKs are necessary for normal tissue self-renewal. Growth inhibition caused by Erk1/2 loss is rescued by reintroducing Erk2, but not by activating Erk effectors that promote G1 cell cycle progression. Unlike fibroblasts, in which Erk1/2 loss decreases cyclin D1 expression and induces G1/S arrest, Erk1/2 loss in epithelial cells reduces cyclin B1 and c-Fos expression and induces G2/M arrest while disrupting a gene regulatory network centered on cyclin B1–Cdc2. Thus, the cell cycle stages at which Erk1/2 activity is required vary by cell type, with Erk1/2 functioning in epithelial cells to enable progression through G2/M

    An integrative paradigm to impart quality to correlative science

    Get PDF
    Correlative studies are a primary mechanism through which insights can be obtained about the bioactivity and potential efficacy of candidate therapeutics evaluated in early-stage clinical trials. Accordingly, well designed and performed early-stage correlative studies have the potential to strongly influence further clinical development of candidate therapeutic agents, and correlative data obtained from early stage trials has the potential to provide important guidance on the design and ultimate successful evaluation of products in later stage trials, particularly in the context of emerging clinical trial paradigms such as adaptive trial design
    corecore