451 research outputs found

    Legumes as basic ingredients in the production of dairy-free cheese alternatives: a review

    Get PDF
    Research into dairy-free alternative products, whether plant-based or cell-based, is growing fast and the food industry is facing a new challenge of creating innovative, nutritious, accessible, and natural dairy-free cheese alternatives. The market demand for these products is continuing to increase owing to more people choosing to reduce or eliminate meat and dairy products from their diet for health, environmental sustainability, and/or ethical reasons. This review investigates the current status of dairy product alternatives. Legume proteins have good technological properties and are cheap, which gives them a strong commercial potential to be used in plant-based cheese-like products. However, few legume proteins have been explored in the formulation, development, and manufacture of a fully dairy-free cheese because of their undesirable properties: heat stable anti-nutritional factors and a beany flavor. These can be alleviated by novel or traditional and economical techniques. The improvement and diversification of the formulation of legume-based cheese alternatives is strongly suggested as a low-cost step towards more sustainable food chains. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    Use of Legumes in Extrusion Cooking: A Review

    Get PDF
    The traditional perception that legumes would not be suitable for extrusion cooking is now completely outdated. In recent years, an increasing number of studies have been conducted to assess the behavior of various types of legume flours in extrusion cooking, proving that legumes have excellent potential for the production of extruded ready-to-eat foods by partially or totally replacing cereals. This review identifies the optimal processing conditions for legume-based and legume-added extruded foods, which allow the improvement of the expansion ratio and give the extrudates the spongy and crisp structure expected by consumers. In particular, the effect of the individual processing parameters on the physical-chemical and nutritional properties of the final product is highlighted. The extrusion cooking process, indeed, has a positive effect on nutritional characteristics, because it induces important modifications on starch and proteins, enhancing their digestibility, and reduces the content of trypsin inhibitors, lectins, phytic acid, and tannins, typically present in legumes. Therefore, the extrusion of legume flours is a viable strategy to improve their nutritional features while reducing home preparation time, so as to increase the consumption of these sustainable crops

    Dry fractionation as a promising technology to reuse the physically defected legume-based gluten-free pasta

    Get PDF
    Dry fractionation was applied to the legume-based pasta (yellow lentils:whole rice 90:10 w:w) discarded for physical defects. After the air classification, the fine fraction showed a 33% increment of the protein content compared to the raw material, with a 21% yield. The scanning electron micrographs revealed the presence of protein–starch complexes and broken starch granules which led to a low protein separation efficiency. The fine fraction showed interesting nutritional features due to the high concentration of the essential micronutrients Zn (43.3 mg kg−1) and Fe (72.6 mg kg−1). However, also the alpha-galactosides were enriched into the same fraction. The two fractions, fine and coarse, were both characterised by elevated water absorption capacity, with significantly higher values in the fine one. Finally, the gelling capacity varied among the fractions, being influenced by the protein content. Overall, these ingredients could be used to fortify the protein and the essential mineral contents of bakery products, sauces, and creams

    Effect of die configuration on the physico-chemical properties, anti-nutritional compounds, and sensory features of legume-based extruded snacks

    Get PDF
    Legumes are not valued by all consumers, mostly due to the prolonged soaking and cooking process they require. This problem could be solved by preparing legume-based ready-to-eat snacks. In this study, the effect of two different dies (circular and star-shaped, with cross-sections of 19.6 and 35.9 mm2, respectively) on the physico-chemical properties, anti-nutritional compounds, and sensory features of extruded breakfast snacks was determined. Extruded products were obtained from 100% legume flours of red lentil, faba bean, brown pea, and common bean. The extrusion-cooking conditions were 2.5 g/s feed rate; 160 ± 1◩C die temperature; 16 ± 1 g/100 g feed moisture, and 230 rpm screw speed. Star-shaped extrudates showed a lower expansion ratio, degree of starch gelatinization, and water solubility index, as well as higher bulk density, hardness, crunchiness, and lightness (L*) values. The oligosaccharides showed non univocal variations by changing the die, whereas phytates did not vary at all. The extrudates from lentil flour (richer in fiber) were the least preferred by sensory panelists, due to their hard texture. However, the spherical extrudates were preferred over the star-shaped product. These results emphasize the possibility of improving the physico-chemical and sensory properties of legume extrudates by selecting a proper die

    Biscuit contaminants, their sources and mitigation strategies: A review

    Get PDF
    The scientific literature is rich in investigations on the presence of various contaminants in biscuits, and of articles aimed at proposing innovative solutions for their control and prevention. However, the relevant information remains fragmented. Therefore, the objective of this work was to review the current state of the scientific literature on the possible contaminants of biscuits, considering physical, chemical, and biological hazards, and making a critical analysis of the solutions to reduce such contaminations. The raw materials are primary contributors of a wide series of contaminants. The successive processing steps and machinery must be monitored as well, because if they cannot improve the initial safety condition, they could worsen it. The most effective mitigation strategies involve product reformulation, and the use of alternative baking technologies to minimize the thermal load. Low oxygen permeable packaging materials (avoiding direct contact with recycled ones), and reformulation are effective for limiting the increase of contaminations during biscuit storage. Continuous monitoring of raw materials, intermediates, finished products, and processing conditions are therefore essential not only to meet current regulatory restrictions but also to achieve the aim of banning dietary contaminants and coping with related diseases

    Serum antioxidant capacity and peroxide level of seven healthy subjects after consumption of different foods

    Get PDF
    This article reports experimental data related to the research article entitled \u201cDifferent effectiveness of two pastas supplemented with either lipophilic or hydrophilic/phenolic antioxidants in affecting serum as evaluated by the novel Antioxidant/Oxidant Balance approach\u201d (M.N. Laus, M. Soccio, M. Alfarano, A. Pasqualone, M.S. Lenucci, G. Di Miceli, D. Pastore, 2016) [1]. Antioxidant status of blood serum of seven healthy subjects was evaluated during four hours after consumption of two functional pastas, supplemented with either bran oleoresin or bran water extract obtained from durum wheat. For comparison, the effect of a non-supplemented reference pasta was also evaluated, as well as the effects of glucose, of the wheat grain dietary supplement Lisosan G, and of the reference pasta consumed together with Lisosan G. Serum antioxidant status was evaluated by measuring both the serum antioxidant capacity, using LOX-FL, ORAC and TEAC methods, and the serum oxidant status, assessed as peroxide level

    Nutritional Features and Bread-Making Performance of Wholewheat: Does the Milling System Matter?

    Get PDF
    Despite the interest in stone-milling, there is no information on the potential advantages of using the resultant wholegrain flour (WF) in bread-making. Consequently, nutritional and technological properties of WFs obtained by both stone- (SWF) and roller-milling (RWF) were assessed on four wheat samples, differing in grain hardness and pigment richness. Regardless of the type of wheat, stone-milling led to WFs with a high number of particles ranging in size from 315 to 710 \u3bcm), whereas RWFs showed a bimodal distribution with large (>1000 \u3bcm) and fine (<250 \u3bcm) particles. On average, the milling system did not affect the proximate composition and the bioactive features of WFs. The gluten aggregation kinetics resulted in similar trends for all SWFs, with indices higher than for RWFs. The effect of milling on dough properties (i.e., mixing and leavening) was sample dependent. Overall, SWFs produced more gas, resulting in bread with higher specific volume. Bread crumb from SWF had higher lutein content in the wheat cv rich in xanthophylls, while bread from RWF of the blue-grained cv had a moderate but significantly higher content in esterified phenolic acids and total anthocyanins. In conclusion, there was no relevant advantage in using stone- as opposed to roller-milling (and vice versa)

    Nutritional features and bread-making performance of wholewheat: Does the milling system matter?

    Get PDF
    Despite the interest in stone-milling, there is no information on the potential advantages of using the resultant wholegrain flour (WF) in bread-making. Consequently, nutritional and technological properties of WFs obtained by both stone- (SWF) and roller-milling (RWF) were assessed on four wheat samples, differing in grain hardness and pigment richness. Regardless of the type of wheat, stone-milling led to WFs with a high number of particles ranging in size from 315 to 710 ”m), whereas RWFs showed a bimodal distribution with large (>1000 ”m) and fine (<250 ”m) particles. On average, the milling system did not affect the proximate composition and the bioactive features of WFs. The gluten aggregation kinetics resulted in similar trends for all SWFs, with indices higher than for RWFs. The effect of milling on dough properties (i.e., mixing and leavening) was sample dependent. Overall, SWFs produced more gas, resulting in bread with higher specific volume. Bread crumb from SWF had higher lutein content in the wheat cv rich in xanthophylls, while bread from RWF of the blue-grained cv had a moderate but significantly higher content in esterified phenolic acids and total anthocyanins. In conclusion, there was no relevant advantage in using stone- as opposed to roller-milling (and vice versa)

    Antinutritional factors, mineral composition and functional properties of dry fractionated flours as influenced by the type of pulse

    Get PDF
    Coarse (CF) and Fine (FF) fractions were obtained by dry fractionation (air classification) of raw micronized flour (RM) of kabuli chickpea, green pea, yellow and red lentil. Pea showed the highest phytate content in RM and CF. Stachyose was the main oligosaccharide in lentils, exceeding 50 mg g-1, whereas raffinose (39.9 mg g-1) was abundant in chickpea. Antinutritional factors were significantly enriched in FF, whereas decreased in CF. Total reflection X-ray fluorescence identified potassium as the main macronutrient in pulses. Ca was highly variable, ranging from 0.92 to 0.28 g kg-1 in pea and yellow lentil, respectively. A significant shift of minerals was observed in FF, but despite the highest phytate content, phytate:Zn ratio of lentils was lower than RM, indicating that Zn was enriched more than phytates. Yellow lentil and pea FF showed a protein content higher than 55 g 100g-1. Dry fractionation significantly affected the physicochemical properties, indicating different potential use of fractions
    • 

    corecore