16,460 research outputs found
Inexactness of the Hydro-Thermal Coordination Semidefinite Relaxation
Hydro-thermal coordination is the problem of determining the optimal economic
dispatch of hydro and thermal power plants over time. The physics of
hydroelectricity generation is commonly simplified in the literature to account
for its fundamentally nonlinear nature. Advances in convex relaxation theory
have allowed the advent of Shor's semidefinite programming (SDP) relaxations of
quadratic models of the problem. This paper shows how a recently published SDP
relaxation is only exact if a very strict condition regarding turbine
efficiency is observed, failing otherwise. It further proposes the use of a set
of convex envelopes as a strategy to successfully obtain a stricter lower bound
of the optimal solution. This strategy is combined with a standard iterative
convex-concave procedure to recover a stationary point of the original
non-convex problem.Comment: Submitted to IEEE PES General Meeting 201
Is it possible to accommodate massive photons in the framework of a gauge-invariant electrodynamics?
The construction of an alternative electromagnetic theory that preserves
Lorentz and gauge symmetries, is considered. We start off by building up
Maxwell electrodynamics in (3+1)D from the assumption that the associated
Lagrangian is a gauge-invariant functional that depends on the electron and
photon fields and their first derivatives only. In this scenario, as
well-known, it is not possible to set up a Lorentz invariant gauge theory
containing a massive photon. We show nevertheless that there exist two
radically different electrodynamics, namely, the Chern-Simons and the Podolsky
formulations, in which this problem can be overcome. The former is only valid
in odd space-time dimensions, while the latter requires the presence of
higher-order derivatives of the gauge field in the Lagrangian. This theory,
usually known as Podolsky electrodynamics, is simultaneously gauge and Lorentz
invariant; in addition, it contains a massive photon. Therefore, a massive
photon, unlike the popular belief, can be adequately accommodated within the
context of a gauge-invariant electrodynamics.Comment: 10 page
Measuring the impact of minimum wage policies on the economy
This paper undertakes a statistical analysis of the effect of minimum wages (MWs) on different population groups. The underlying question for this analysis relates to the probability bias exerted by certain protective government regulations in terms of the unemployment prospects of specific groups. Several cross-sectional data and a standard human capital model corrected for selectivity bias are used to analyze the case of Chile, where high structural unemployment has been a remarkable feature of the 1970s and 1980s. The main conclusions show that the coverage of the MW is more significant for the young and the less educated, and there exists a negative relationship between human capital stock and actual coverage of MWs. It is also shown that previous statistical analysis of this issue, both in the case of Chile and in industrial countries may have underestimated the negative impact of MWs because they do not correct for selectivity bias.Environmental Economics&Policies,Economic Theory&Research,Labor Markets,Banks&Banking Reform,Poverty Assessment
Adoption of Transgenic Crops by Smallholder Farmers in Entre Rios, Argentina
This is a study of the adoption of transgenic crops by 120 smallholder farmers interviewed in July 2005 in the communities of San Jose de Feliciano and La Paz in the Entre Rios Province of Argentina. Logistic regression results indicate that access to a planter is essential for smallholders to adopt Bt corn, while adopters of Roundup Ready soybeans have larger farms, access to credit, availability of all essential machinery, more years of schooling, and are primarily located in the La Paz community.transgenic crops, technology adoption, Bt corn, Roundup Ready soybeans, biotechnology, Argentina, smallholders, Farm Management, Research and Development/Tech Change/Emerging Technologies,
A possible black hole in the gamma-ray microquasar LS 5039
The population of high energy and very high energy gamma-ray sources,
detected with EGRET and the new generation of ground-based Cherenkov
telescopes, conforms a reduced but physically important sample. Most of these
sources are extragalactic (e.g., blazars), while among the galactic ones there
are pulsars and SN remnants. The microquasar LS 5039, previously proposed to be
associated with an EGRET source by Paredes et al. (2000), has recently been
detected at TeV energies, confirming that microquasars should be regarded as a
class of high energy gamma-ray sources. To model and understand how the
energetic photons are produced and escape from LS 5039 it is crucial to unveil
the nature of the compact object, which remains unknown. Here we present new
intermediate-dispersion spectroscopy of this source which, combined with values
reported in the literature, provides an orbital period of 3.90603+/-0.00017 d,
a mass function f(M)=0.0053+/-0.0009 M_sun, and an eccentricity e=0.35+/-0.04.
Atmosphere model fitting to the spectrum of the optical companion, together
with our new distance estimate of d=2.5+/-0.1 kpc, yields R_opt=9.3+0.7-0.6
R_sun, log (L_opt/L_sun)=5.26+/-0.06, and M_opt=22.9+3.4-2.9 M_sun. These,
combined with our dynamical solution and the assumption of
pseudo-synchronization, yield an inclination i=24.9+/-2.8 degree and a compact
object mass M_X=3.7+1.3-1.0 M_sun. This is above neutron star masses for most
of the standard equations of state and, therefore, we propose that the compact
object in LS 5039 is a black hole. We finally discuss about the implications of
our orbital solution and new parameters of the binary system on the CNO
products, the accretion/ejection energetic balance, the SN explosion scenario,
and the behaviour of the TeV emission with the new orbital period.Comment: 10 pages, 8 figures. Accepted for publication in MNRAS. Minor changes
according to referee repor
Experimental realization of plaquette resonating valence bond states with ultracold atoms in optical superlattices
The concept of valence bond resonance plays a fundamental role in the theory
of the chemical bond and is believed to lie at the heart of many-body quantum
physical phenomena. Here we show direct experimental evidence of a
time-resolved valence bond quantum resonance with ultracold bosonic atoms in an
optical lattice. By means of a superlattice structure we create a
three-dimensional array of independent four-site plaquettes, which we can fully
control and manipulate in parallel. Moreover, we show how small-scale plaquette
resonating valence bond states with s- and d-wave symmetry can be created and
characterized. We anticipate our findings to open the path towards the creation
and analysis of many-body RVB states in ultracold atomic gases.Comment: 7 page, 4 figures in main text, 3 figures in appendi
Is the pseudogap a topological state?
We conjecture that the pseudogap is an inhomogeneous condensate above the
homogeneous state whose existence is granted by topological stability. We
consider the simplest possible order parameter theory that provides this
interpretation of the pseudogap and study its angular momentum states. The
normal state gap density, the breaking of the time reversal symmetry and the
checkerboard pattern are naturally explained under this view. The pseudogap is
a lattice of skyrmions and the inner weak local magnetic field falls below the
experimental threshold of observation given by NMR/NQR and SR experiments.Comment: 12 pages, six figures, one tabl
- …
