6,428 research outputs found

    Numerical simulation and experimental validation of fatigue behavior of wood-glass fiber composite T joint

    Get PDF
    In this paper, a numerical FE model is developed with ANSYS and validated by experimental tests to identify possible damage locations and fatigue breakage in different wood-glass fiber composite T-joints for marine applications. Both static and fatigue tests in three-point bending configuration have been performe

    SDHA Germline Mutations in SDH-Deficient GISTs: A Current Update

    Get PDF
    Loss of function of the succinate dehydrogenase complex characterizes 20-40% of all KIT/PDGFRA-negative GIST. Approximately half of SDH-deficient GIST patients lack SDHx mutations and are caused by a hypermethylation of the SDHC promoter, which causes the repression of SDHC transcription and depletion of SDHC protein levels through a mechanism described as epimutation. The remaining 50% of SDH-deficient GISTs have mutations in one of the SDH subunits and SDHA mutations are the most common (30%), with consequent loss of SDHA and SDHB protein expression immunohistochemically. SDHB, SDHC, and SDHD mutations in GIST occur in only 20-30% of cases and most of these SDH mutations are germline. More recently, germline mutations in SDHA have also been described in several patients with loss of function of the SDH complex. SDHA-mutant patients usually carry two mutational events at the SDHA locus, either the loss of the wild type allele or a second somatic event in compound heterozygosis. This review provides an overview of all data in the literature regarding SDHA-mutated GIST, especially focusing on the prevalence of germline mutations in SDH-deficient GIST populations who harbor SDHA somatic mutations, and offers a view towards understanding the importance of genetic counselling for SDHA-variant carriers and relatives

    Synchrotron oscillation damping due to beam-beam collisions

    Get PDF
    In DA{\Phi}NE, the Frascati e+/e- collider, the crab waist collision scheme has been successfully implemented in 2008 and 2009. During the collision operations for Siddharta experiment, an unusual synchrotron damping effect has been observed. Indeed, with the longitudinal feedback switched off, the positron beam becomes unstable with beam currents in the order of 200-300 mA. The longitudinal instability is damped by bringing the positron beam in collision with a high current electron beam (~2A). Besides, we have observed a shift of \approx 600Hz in the residual synchrotron sidebands. Precise measurements have been performed by using both a commercial spectrum analyzer and the diagnostics capabilities of the DA{\Phi}NE longitudinal bunch-by-bunch feedback. This damping effect has been observed in DA{\Phi}NE for the first time during collisions with the crab waist scheme. Our explanation is that beam collisions with a large crossing angle produce a longitudinal tune shift and a longitudinal tune spread, providing Landau damping of synchrotron oscillations.Comment: 3 pages, 5 figures, talk presented to IPAC'10 - Kyoto - May 24-28 201

    Positive and Negative Regulation of Cellular Immune Responses in Physiologic Conditions and Diseases

    Get PDF
    The immune system has evolved to allow robust responses against pathogens while avoiding autoimmunity. This is notably enabled by stimulatory and inhibitory signals which contribute to the regulation of immune responses. In the presence of a pathogen, a specific and effective immune response must be induced and this leads to antigen-specific T-cell proliferation, cytokines production, and induction of T-cell differentiation toward an effector phenotype. After clearance or control of the pathogen, the effector immune response must be terminated in order to avoid tissue damage and chronic inflammation and this process involves coinhibitory molecules. When the immune system fails to eliminate or control the pathogen, continuous stimulation of T cells prevents the full contraction and leads to the functional exhaustion of effector T cells. Several evidences both in vitro and in vivo suggest that this anergic state can be reverted by blocking the interactions between coinhibitory molecules and their ligands. The potential to revert exhausted or inactivated T-cell responses following selective blocking of their function made these markers interesting targets for therapeutic interventions in patients with persistent viral infections or cancer

    State of the art of evapotranspiration models for plant cultivation in open fields, greenhouse systems and plant factories

    Get PDF
    The scarcity of water, the need to reduce of pesticides, the demand for on-site production of vegetables are moving the interest from greenhouse cultivation to indoor farming. Compared to greenhouses, indoor farms allow to reduce considerably the water consumption, requiring more energy, which could be provided by renewable sources. In order to assess the convenience of such a system, accurate preliminary calculations are needed for productivity, energy requirements and costs as a function of the type of cultivation and the operating conditions. While some knowledge (e.g. production rate or cooling system performance) are available from open literature, some specific predictive methods are required. Based on the few works available in literature about indoor farming, evapotranspiration rate resulted as a critical term. An assessment of different methods based on literature data with a critical analysis of their effectiveness based on several aspects (level of fidelity of the model, complexity in the calibration and use, potential strengths and weaknesses) is proposed in this work

    ORC cogeneration systems in waste-heat recovery applications

    Get PDF
    The performance of organic Rankine cycle (ORC) systems operating in combined heat and power (CHP) mode is investigated. The ORC-CHP systems recover heat from selected industrial waste-heat fluid streams with temperatures in the range 150°C-330°C. An electrical power output is provided by the expanding working fluid in the ORC turbine, while a thermal output is provided by the cooling water exiting the ORC condenser and also by a second heat-exchanger that recovers additional thermal energy from the heat-source stream downstream of the evaporator. The electrical and thermal energy outputs emerge as competing objectives, with the latter favoured at higher hot-water outlet temperatures and vice versa. Pentane, hexane and R245fa result in ORC-CHP systems with the highest exergy efficiencies over the range of waste-heat temperatures considered in this work. When maximizing the exergy efficiency, the second heat-exchanger is effective (and advantageous) only in cases with lower heat-source temperatures (< 250°C) and high heat-delivery/demand temperatures (> 60°C) giving a fuel energy savings ratio (FESR) of over 40%. When maximizing the FESR, this heat exchanger is essential to the system, satisfying 100% of the heat demand in all cases, achieving FESRs between 46% and 86%

    Thermo-economic assessment of flexible nuclear power plants in the UK’s future low-carbon electricity system: role of thermal energy storage

    Get PDF
    Nuclear power plants are commonly operated as baseload units due to their low variable costs, high investment costs and limited ability to modulate their output. The increasing penetration of intermittent renewable power will require additional flexibility from conventional generation units, in order to follow the fluctuating renewable output while guaranteeing security of energy supply. In this context, coupling nuclear reactors with thermal energy storage could ensure a more continuous and efficient operation of nuclear power plants, while at other times allowing their operation to become more flexible and cost-effective. This study considers options for upgrading a 1610-MWel nuclear power plant with the addition of a thermal energy storage system and secondary power generators. The analysed configuration allows the plant to generate up to 2130 MWel during peak load, representing an increase of 32% in nominal rated power. The gross whole-system benefits of operating the proposed configuration are quantified over several scenarios for the UK’s low-carbon electricity system. Replacing conventional with flexible nuclear plant configuration is found to generate system cost savings that are between £24.3m/yr and £88.9m/yr, with the highest benefit achieved when stored heat is fully discharged in 0.5 hours (the default case is 1 hour). At an estimated cost of added flexibility of £42.7m/yr, the proposed flexibility upgrade to a nuclear power plant appears to be economically justified for a wide range of low-carbon scenarios, provided that the number of flexible nuclear units in the system is small

    Direct cross section measurement for the 18O(p,γ)19F reaction at astrophysical energies at LUNA

    Get PDF
    18 O ( p, γ ) 19 F plays an important role in the AGB star scenarios. The low energy cross section could be influenced by a hypothetical low energy resonance at 95 keV and by the tails of the higher energy broad states. The 95 keV resonance lies in the energy window corresponding to the relevant stellar temperature range of 40-50 MK.Measurements of the direct cross section were performed at the Laboratory for Underground Nuclear Astrophysics (LUNA), including the unobserved low energy resonance, the higher energy resonances and the non-resonant component, taking advantage of the extremely low environmental background. Here we report on the experimental setup and the status of the analysis
    corecore