28 research outputs found

    Development and reliability of a multi-modality scoring system for evaluation of disease progression in pre-clinical models of osteoarthritis: celecoxib may possess disease-modifying properties

    Get PDF
    SummaryObjectiveWe sought to develop a comprehensive scoring system for evaluation of pre-clinical models of osteoarthritis (OA) progression, and use this to evaluate two different classes of drugs for management of OA.MethodsPost-traumatic OA (PTOA) was surgically induced in skeletally mature rats. Rats were randomly divided in three groups receiving either glucosamine (high dose of 192 mg/kg) or celecoxib (clinical dose) or no treatment. Disease progression was monitored utilizing micro-magnetic resonance imaging (MRI), micro-computed tomography (CT) and histology. Pertinent features such as osteophytes, subchondral sclerosis, joint effusion, bone marrow lesion (BML), cysts, loose bodies and cartilage abnormalities were included in designing a sensitive multi-modality based scoring system, termed the rat arthritis knee scoring system (RAKSS).ResultsOverall, an inter-observer correlation coefficient (ICC) of greater than 0.750 was achieved for each scored feature. None of the treatments prevented cartilage loss, synovitis, joint effusion, or sclerosis. However, celecoxib significantly reduced osteophyte development compared to placebo. Although signs of inflammation such as synovitis and joint effusion were readily identified at 4 weeks post-operation, we did not detect any BML.ConclusionWe report the development of a sensitive and reliable multi-modality scoring system, the RAKSS, for evaluation of OA severity in pre-clinical animal models. Using this scoring system, we found that celecoxib prevented enlargement of osteophytes in this animal model of PTOA, and thus it may be useful in preventing OA progression. However, it did not show any chondroprotective effect using the recommended dose. In contrast, high dose glucosamine had no measurable effects

    Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity

    No full text
    In this article, we report the synthesis and in vitro evaluation of a new class of nonionizing bone-targeting contrast agents based on bisphosphonate-conjugated superparamagnetic iron oxide nanoparticles (SPIONs), for use in imaging of bone turnover with magnetic resonance imaging (MRI). Similar to bone-targeting 99mTechnetium medronate, our novel contrast agent uses bisphosphonates to impart bone-seeking properties, but replaces the former radioisotope with nonionizing SPIONs which enables their subsequent detection using MRI. Our reported method is relatively simple, quick and cost-effective and results in BP-SPIONs with a final nanoparticle size of 17 nm under electron microscopy technique (i.e., TEM). In-vitro binding studies of our novel bone tracer have shown selective binding affinity (around 65%) for hydroxyapatite, the principal mineral of bone. Bone-targeting SPIONs offer the potential for use as nonionizing MRI contrast agents capable of imaging dynamic bone turnover, for use in the diagnosis and monitoring of metabolic bone diseases and related bone pathology
    corecore