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Development and reliability of a multi-modality scoring system for
evaluation of disease progression in pre-clinical models of
osteoarthritis: celecoxib may possess disease-modifying properties
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Objective: We sought to develop a comprehensive scoring system for evaluation of pre-clinical models of
osteoarthritis (OA) progression, and use this to evaluate two different classes of drugs for management of
OA.
Methods: Post-traumatic OA (PTOA) was surgically induced in skeletally mature rats. Rats were randomly
divided in three groups receiving either glucosamine (high dose of 192 mg/kg) or celecoxib (clinical dose)
or no treatment. Disease progression was monitored utilizing micro-magnetic resonance imaging (MRI),
micro-computed tomography (CT) and histology. Pertinent features such as osteophytes, subchondral
sclerosis, joint effusion, bone marrow lesion (BML), cysts, loose bodies and cartilage abnormalities were
included in designing a sensitive multi-modality based scoring system, termed the rat arthritis knee
scoring system (RAKSS).
Results: Overall, an inter-observer correlation coefficient (ICC) of greater than 0.750 was achieved for
each scored feature. None of the treatments prevented cartilage loss, synovitis, joint effusion, or sclerosis.
However, celecoxib significantly reduced osteophyte development compared to placebo. Although signs
of inflammation such as synovitis and joint effusion were readily identified at 4 weeks post-operation,
we did not detect any BML.
Conclusion: We report the development of a sensitive and reliable multi-modality scoring system, the
RAKSS, for evaluation of OA severity in pre-clinical animal models. Using this scoring system, we found
that celecoxib prevented enlargement of osteophytes in this animal model of PTOA, and thus it may be
useful in preventing OA progression. However, it did not show any chondroprotective effect using the
recommended dose. In contrast, high dose glucosamine had no measurable effects.

© 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
armaceutical Science, 2020J
search, University of Alberta,
8758.
& Diagnostic Imaging 2A2.41
NW Edmonton, Alberta T6G

hifar), jjaremko@ualberta.ca,
sier@albertahealthservices.ca
rt), walter.maksymowych@
a (B.G. Fallone), mdoschak@

ternational. Published by Elsevier L
Introduction

Osteoarthritis (OA) is classically characterized by cartilage
degeneration, and abnormal bone adaptations such as formation of
permanent osteophytes and subchondral bone sclerosis. Despite a
number of available palliative treatments, there is currently no
disease-modifying treatment. Having a safe pharmacodynamic
profile, glucosamine, an amino monosaccharide used in biosyn-
thesis of glycosaminoglycans in articular cartilage, alone or in
combination with chondroitin sulfate has been used worldwide for
td. All rights reserved.
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Fig. 1. a) Sagittal T1-weighted/fat suppressed MRI prior to surgery, displaying intact ACL and PCL; b) Sagittal image of the same joint after 12 weeks showing only PCL after
transection of ACL (Gd-enhanced); c) coronal micro-CT from the same rat showing absence of medial meniscus (arrow and circle) at 1 day post-surgery. Note that unlike in humans,
menisci are ossified in rats. d, e) Sagittal micro-CT of the same joint at baseline (d) and 12 weeks post-surgery (e). Note subchondral sclerosis in femur and tibia (brackets). Also,
presence of a mineralized loose body (arrow) that was absent at baseline is notable.
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management of OA symptoms, albeit without consensus regarding
its disease-modifying capacity1,2. Differences in formulation and
bioavailability, stage of the disease2 in experimental groups, and
different administered doses3 have been suggested as factors
responsible for the controversy. Furthermore, performing studies in
different experimental models as well as variability in outcome
measures used makes direct comparisons among these studies
challenging.

In the current study we aimed to evaluate the effect of glucos-
amine and another agent thought to have disease-modifying
properties, celecoxib, head-to-head in an established animal
model of post-traumatic OA (PTOA). As a prerequisite, it is vitally
important to measure the effects of experimented therapeutics
using standardized and validated methods for outcome assess-
ment. Several scoring systems exist based on a single modality for
use in humans such as the traditional and widely used radiological
KellgreneLawrence4 system or newer magnetic resonance imaging
(MRI)-based systems likeWORMS 5 or BLOKS6. However, due to the
complex nature of the disease, the measuring system must be not
only sufficiently discriminatory to detect minor and early changes,
but also assess multiple outcome domains relevant to the clinical
and pathophysiological aspects of disease. There are some features
that either cannot be detected with one modality or the sensitivity
would be low. For instance, we have observed that osteophytes are
detectable by computed tomography (CT) long before they appear
on MRI or planar X-ray, owing to higher resolution and greater
bone/soft tissue contrast of CT (observation from a pilot study, data
not shown). Therefore, in the current report we have focused effort
towards incorporating as many outcomes as possible to design a
comprehensive scoring system.

In this manuscript we describe a comprehensive multimodal
approach to the assessment of experimental OA. Bony adaptations
such as osteophyte formation, subchondral sclerosis, and the oc-
casional presence of calcified loose bodies were scored mainly by
the use of micro-CT. Soft tissue abnormalities including synovitis,
joint effusion, cysts, loose bodies and edema were identified and
scored using micro-MRI. Cartilage structure at different time points
was assessed by histology, as the most sensitive tool for the
purpose.

Since animal studies are a prerequisite to human trials, our
objective was to develop a multi-modality scoring system
combining MRI, CT and histology features applicable to rats as the
most available and extensively studied experimental model of OA.
However, this system can be easily optimized for use in other an-
imal models. Using this system, we sought to determine whether
two controversial therapies, celecoxib and glucosamine, were
actually disease-modifying agents in a pre-clinical rat model of
PTOA.

Methods and materials

Surgical model of PTOA

PTOA was surgically induced in 27 skeletally mature (9-month-
old) SpragueeDawley rats (Charles River Laboratories, US) by Knee
Triad Injury (KTI) surgery7, with an additional three rats included as
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sham-operated control. Briefly, rats were anesthetized with 2%
isoflurane, the right knee was shaved and disinfected for operation.
A minor incision (1 cm) was made on the medial parapatellar side
and the joint capsule was exposed, followed by transection of the
medial collateral ligament (MCL). The anterior cruciate ligament
(ACL) was carefully transected with micro spring-scissors and the
medial meniscus was resected [Fig. 1]. Finally, the joint capsule was
flushed with sterile saline and both incisions to the capsule and
skin were sutured separately. For sham surgery, the skin was
exposed and a similarly sized incision was made to the synovial
membrane and sutured without any injury to the MCL, ACL or
meniscus. After the surgery all animals received a single subcu-
taneous dose of meloxicam analgesic (0.1 mg/kg) (Metacam,
Boehringer Ingelheim Ltd., CA, USA) and were regularly monitored
for signs of discomfort. All animal procedures were carried out in
full compliance with the standards of the animal care and use
committee of the University of Alberta [see Fig. 2].

Experimental design

KTI-operated animals (n ¼ 27) were randomly divided in three
groups (n ¼ 9 each). The first group received no treatment. The
second group received a daily oral dose of celecoxib (Celebrex,
Pfizer, USA) using a curved feeding needle at 2.86mg/kg (calculated
based on recommended human dose of 200 mg/day). The third
cohort received a daily oral dose of glucosamine hydrochloride
(Sigma, USA) at 192 mg/kg (160 mg/kg free base). Three rats from
each groupwere euthanized every 4weeks for histological analysis.
The sham-operated group (n ¼ 3) was euthanized at week 12 and
did not receive any therapy.

In vivo micro-CT

In vivo micro-CT scans were acquired at 18 mm resolution uti-
lizing Skyscan 1076 (SkyScan NV, Kontich, Belgium). Scans were
performed at 1 day post-surgery to confirm complete removal of
the meniscus and follow-up was conducted at 4, 8, and 12 weeks.
The imaging parameters were set at: voltage ¼ 70 KV,
Fig. 2. Micro-CT cross sections showing formation and mineralization of osteophytes at join
bed) The same bone at 4, 8, and 12 weeks post-surgery, respectively. Note the formation of
insertion (arrows). Also, subchondral sclerosis and thickening of bone cortex at medial side a
baseline and 12 weeks post-surgery. g and h) micro-CT images of patella from the same jo
current ¼ 142 mA, exposure time ¼ 1,475 ms, rotation step ¼ 0.5�.
Scan time was approximately 42 min. A 1 mm aluminum filter was
used to remove low energy X-rays. Projections were reconstructed
using a modified Feldkamp back-projection algorithm to obtain
cross-sections.

In vivo micro-MRI

In vivo MRI was performed sequentially at 1 day before surgery
and 4, 8 and 12 weeks after surgery, utilizing a 9.4 T micro-MRI
scanner (Magnex Scientific, Oxford, UK) and a custom-built trans-
mit/receive 25 mm single turn radiofrequency surface coil. Sagittal
fat-suppressed T1-weighted (TR 1,250 ms/TE 13 ms) and T2-
weighted (TR 3,000 ms/TE 35 ms) spin echo (SE) sequences were
acquired at each time point, along with T2-weighted axial images.
Field of view was 35 � 20 mm, slice thickness: 0.5 mm, inter-slice
gap: 0.1 mm. In addition, contrast-enhanced sagittal and coronal
T1-weighted images were acquired at the end-points after Gado-
linium (Gd) injection (0.3 mL/kg ¼ 0.15 mmol/kg) as additional
method of detecting BMLs.

Histology

After euthanization, right hind limbs were dissected free of soft
tissues and fixed in Zamboni's fixative for 10 days, decalcified in
Cal-Ex II® (Fisher Scientific, USA) for 4 weeks and the femoral
epiphysis sectioned transversely through the origins of the collat-
eral ligaments. 5 mm sections were obtained and stained with
Safranin-O/Fast green and H&E.

Scoring system

A multimodality scoring system for application in pre-clinical
animal studies was developed in an iterative consensus-building
process. This rat arthritis knee scoring system (RAKSS) was tested
for sensitivity to change and reliability. The system measures
severity of seven primary features of OA: osteophytes, subchondral
sclerosis, synovitis-effusion, bony cysts, bone marrow lesions
t margins over time. a) Femur at baseline. The regions used for scoring are illustrated.
osteophytes around the MCL attachment, trochlear groove, and less pronounced at LCL
re notable. e and f) The images show the transverse view of tibia from the same joint at
int at baseline and 12 weeks. Examples of scoring are provided in the Supporting File.



Table I
RAKSS scoring system

Feature Grade Modality Plane

Osteophyte. Femur, tibia, and patella each scored separately
at four locations (Fig. 2). Femur and tibia: anterior
and posterior medial/lateral, patella: superior and inferior
medial/lateral. For each location the maximum score is 2

[0e24] CT Femur and tibia: axial
Patella: coronal

� None/Possible (maximum depth of osteophyte to bone � 0.2 mm) 0
� Definite (0.2 mm < �0.5 mm) 1
� Large (>0.5 mm) 2

Subchondral sclerosis. Femur and tibia scored separately
at two locations (medial and lateral). For each location
maximum score is 3

[0e12] CT Sagittal

� Maximum depth of subchondral plate � 0.3 mm 0
� 0.3 mm< �0.65 mm 1
� 0.65 mm< �1 mm 2
� >1 mm 3

Synovitiseeffusion. If sum of bright signal at suprapatellar
and posterior condyle at both medial and lateral side (4 locations) is:

[0e5] MRI (T2-weighted) Axial: Suprapatellar

� � 0.4 mm 0 Sagittal: posterior condyle
� 0.4 mm < �1 mm 1
� 1 mm < �2 mm 2
� 2 mm < �3 mm 3
� 3 mm < �4 mm 4
� >4 mm 5

Bone cysts. Femur, tibia, and patella scored separately [0e3] MRI or CT Axial/Sagittal
� None 0
� Present 1

Loose bodies [0e3] MRI or CT Axial/Sagittal
� None 0
� Number of bodies ¼ 1 1
� Number of bodies ¼ 2 2
� Number of bodies ¼ 3 or more 3

BML. Femur, tibia, and patella scored separately. [0e3] MRI (T2-weighted fat suppressed) Axial/Sagittal
� None 0
� Present 1

Cartilage (directly adopted from modified Mankin's scoring system*) [0e14] Histology (H&E and Safranin-O stains) Transverse
I. Structure
� Normal 0
� Surface irregularities 1
� Pannus and surface irregularities 2
� Clefts to transitional zone 3
� Clefts to radial zone 4
� Clefts to calcified zone 5
� Complete disorganization 6

II. Cells
� Normal 0
� Diffuse hypercellularity 1
� Cloning 2
� Hypocellularity 3

III. Safranin-O staining
� Normal 0
� Slight reduction 1
� Moderate reduction 2
� Severe reduction 3
� No dye noted 4

IV. Tidemark integrity
� Intact 0
� Crossed by blood vessels 1
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(BML), loose bodies and cartilage degeneration. Scoring in-
structions are given in Table I and examples are provided
throughout the article as well as in a Supporting File.

All CT datasets were rotated to the transverse plane (relative to
the tibia) and stored at sagittal, axial, and coronal planes for later
use. Osteophytes were scored separately for femur, tibia and pa-
tella at four regions. The maximum depth of osteophyte perpen-
dicular to bone was measured and scored in a two scale score
(maximum of eight for each bone). Depth of less than 0.2 mm was
considered ambiguous and scored 0. The reference plane for
scoring femur and tibia was axial and for the patella, coronal.
Osteophytes were scored based on CT, although large osteophytes
were visible on MRI.
Subchondral sclerosis was evaluated in the femur and tibia at
both medial and lateral sides based on a three scale score (a
maximum score of six for each bone). Sclerosis was defined as a
solid mineralized region with no distinct trabecular structure. The
depth of sclerosis was measured on sagittal CT, from the articular
surface along the diaphysis and the maximum value was reported.
Baseline data were analyzed and depth of up to 0.3 mm was
considered normal thickness of subchondral bone plate.

Synovitis and joint effusion were scored together (Table I), and
measured as the sum of maximum length of bright signal
perpendicular to bone on T2 fat-suppressed MRI, at four locations
eminent for presence of synovitis-effusion; suprapatellar and
posterior to both condyles. The severity was graded based on the



Table II
Mean scores and comparisons

Feature Baseline (n ¼ 3) 4 Weeks (n ¼ 3) 8 Weeks (n ¼ 3) 12 Weeks (n ¼ 3) Baseline (n ¼ 3) 4 Weeks n ¼ 3) 8 Weeks (n ¼ 3) 12 Weeks (n ¼ 3)

Untreated Sham-operated
control

Femur osteophyte y0 5, [2.52, 7.48] 5.6, [4.23, 7.10] 7, [4.52, 9.48] y0 y0
P < 0.001

y0
P < 0.001

y0
P < 0.001

Tibia osteophyte y0 4.6, [1.80, 7.54] 5.3, [2.46, 8.20] 4.3, [2.90, 5.77] y0 y0
P ¼ 0.002

y0
P < 0.001

y0
P < 0.001

Patella osteophyte y0 3.6, [�6.37, 13.71] 4.6, [�2.50, 11.84] 6, [1.70, 10.30] y0 y0
P ¼ 0.008

y0
P ¼ 0.049

y0
P ¼ 0.004

Osteophyte total y0 13.3, [3.93, 22.74] 15.6, [5.63, 25.71] 17.3, [10.16, 24.50] y0 y0
P ¼ 0.004

y0
P ¼ 0.003

y0
P < 0.001

Sclerosis medial femur 0.3, [�1.10, 1.77] y2 2.3, [0.90, 3.77] 2.3, [0.90, 3.77] 0.5, [�0.85, 1.15] y0.5, [�0.85, 1.15],
P ¼ 0.028

y0.5, [�0.85, 1.15],
P ¼ 0.049

y0
P ¼ 0.012

Sclerosis lateral femur y0 y0 y0 y0 y0 y0 y0 y0
Sclerosis medial tibia y0 1.3, [�0.10, 2.77] y2 y2 y0 y0

P ¼ 0.05
y0.5, [�0.85, 1.15],
P ¼ 0.028

y0
P ¼ 0.046

Sclerosis lateral tibia y0 y0 y0 y0 y0 y0 y0 y0
Synovitis-effusion total y0 3.6, [2.23, 5.10] 3.6, [2.23, 5.10] 3.3, [1.90, 4.77] y0 1.5, [�0.85, 1.15],

P ¼ 0.032
0.5, [�0.85, 1.15],
P ¼ 0.011

1.5, [�0.85, 2.85],
P ¼ 0.049

Bone cysts total 0.3, [�1.10, 1.77] 0.3, [�1.10, 1.77] 0.6, [�0.77, 2.10] y1 1, [1.71, 3.71],
P ¼ 0.495

1, [1.71, 3.71],
P ¼ 0.495

1, [�1.71, 3.71],
P ¼ 0.724

1, [�1.71, 3.71],
P ¼ 1.00

BML total y0 0.3, [�1.10, 1.77] 0.3, [�1.10, 1.77] 0.3, [�1.10, 1.77] y0 y0
P ¼ 0.495

y0
P ¼ 0.495

y0
P ¼ 0.495

Loose bodies y0 0.6, [�0.77, 2.10] 1, [�1.48, 3.48] 0.6, [�2.20, 3.54] y0
P ¼ 0.219

y0
P ¼ 0.219

y0
P ¼ 0.272

y0
P ¼ 0.495

Cartilage structure N/A 5.3, [3.90, 6.77] 5.3, [2.46, 8.20] y6 N/A y0
P < 0.001

N/A y0
P < 0.001

Cartilage cells N/A 2.3, [0.90, 3.77] 2.3, [�0.54, 5.20] y3 N/A y0
P < 0.001

N/A y0
P < 0.001

Cartilage Safranin-O
staining

N/A y1 1.3, [�0.10, 2.77] 1.3, [�0.10, 2.77] N/A y0
P ¼ 0.009

N/A y0
P ¼ 0.009

* Cartilage tidemark
integrity

N/A y0 y0 y0 N/A y0 N/A y0

Cartilage total N/A 8.6, [5.80, 11.54] 9, [4.70, 13.30] 10.3, [8.90, 11.77] N/A 0
P < 0.001

N/A 0
P < 0.001

Celecoxib Glucosamine
Femur osteophyte y0 1.6, [0.23, 3.10], P ¼ 0.007

P < 0.001
3.3, [1.90, 4.77],
P ¼ 0.008
P ¼ 0.016

4, [1.52, 6.48],
P ¼ 0.021
P ¼ 0.028

y0 5.6, [4.23, 7.10],
P ¼ 0.374

6.3, [3.46, 9.20],
P ¼ 0.422

y7
P ¼ 1.00

Tibia osteophyte y0 1, [�1.48, 3.48], P ¼ 0.014
P ¼ 0.07

2.6, [�1.13, 6.46],
P ¼ 0.073
P ¼ 0.519

2.3, [�0.54, 5.20],
P ¼ 0.055
P ¼ 0.148

y0 3, [0.52, 5.48],
P ¼ 0.132

3.3, [1.90, 4.77],
P ¼ 0.055

y4
P ¼ 0.495

Patella osteophyte y0 1.3, [�0.10, 2.77], P ¼ 0.378
P ¼ 0.004

2.3, [�1.46, 6.13],
P ¼ 0.284
P ¼ 0.32

2.6, [�0.20, 5.54],
P ¼ 0.05
P ¼ 0.138

y0 4, [�0.97, 8.97],
P ¼ 0.904

4.6, [�3.32, 12.65],
P ¼ 1.00

5.5, [�1.56, 15.56],
P ¼ 0.789

Osteophyte total y0 4, [�0.97, 8.97], P ¼ 0.02
P ¼ 0.015

8.3, [0.74, 15.92],
P ¼ 0.066
P ¼ 0.139

9, [4.70, 13.30],
P ¼ 0.013
P ¼ 0.022

y0 12.6, [5.08, 20.26],
P ¼ 0.824

14.3, [2.59, 26.07],
P ¼ 0.729

16.5, [1.27, 25.56],
P ¼ 0.754

Sclerosis medial femur 0.3 [�1.10, 1.77] y1
P ¼ 0.025
P ¼ 0.025

y2
P ¼ 0.43
P ¼ 1.00

y2
P ¼ 0.374
P ¼ 1.00

y0 y2
P ¼ 1.00

y2
P ¼ 0.374

y2
P ¼ 0.495

Sclerosis lateral femur y0 y0 y0 y0 y0 y0 y0 y0
Sclerosis medial tibia y0 1.3, [�0.1, 2.77], P ¼ 1.00

P ¼ 0.114
y2
P ¼ 1.00
P ¼ 1.00

y2
P ¼ 1.00
P ¼ 1.00

y0 y2
P ¼ 0.116

y2
P ¼ 1.00

y2
P ¼ 1.00

Sclerosis lateral tibia y0 y0 y0 y0 y0 y0 y0 y0
(continued on next page)
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Table II (continued )

Feature Baseline (n ¼ 3) 4 Weeks (n ¼ 3) 8 Weeks (n ¼ 3) 12 Weeks (n ¼ 3) Baseline (n ¼ 3) 4 Weeks n ¼ 3) 8 Weeks (n ¼ 3) 12 Weeks (n ¼ 3)

Synovitiseeffusion
total

y0 3.6, [2.23, 5.10], P ¼ 1.00
P ¼ 0.317

y3
P ¼ 0.116
P ¼ 0.025

3.3, [1.90, 4.77],
P ¼ 1.00
P ¼ 0.789

y0 y4
P ¼ 0.374

y4
P ¼ 0.374

3.5 [0.85, 7.85],
P ¼ 0.789

Bone cysts total y0 0.6, [�0.77, 2.10], P ¼ 0.519
P ¼ 1.00

1, [�1.48, 3.48],
P ¼ 0.643
P ¼ 1.00

1.6, [0.23, 3.10],
P ¼ 0.116
P ¼ 0.495

0.3, [�1.10, 1.77],
P ¼ 0.519

0.6, [�0.77, 2.10],
P ¼ 0.519

0.6, [�0.77, 2.10],
P ¼ 0.643

1, �6.71, 6.71], P ¼ 1.00

BML total y0 y0, P ¼ 0.374
P ¼ 1.00

y0, P ¼ 0.374
P ¼ 1.00

y0, P ¼ 0.374
P ¼ 1.00

y0 y0
P ¼ 0.495

y0
P ¼ 0.495

y0
P ¼ 0.495

Loose bodies y0 0.3, [�1.10, 1.77], P ¼ 0.519
P ¼ 0.519

0.6, [�0.77, 2.10],
P ¼ 0.643
P ¼ 1.00

1, [�1.48, 3.48],
P ¼ 0.725
P ¼ 1.00

y0 0.6, [�0.77, 2.10],
P ¼ 1.00

0.6, [�0.77, 2.10],
P ¼ 0.643

y1
P ¼ 0.724

Cartilage structure N/A 5, [2.52, 7.48], P ¼ 0.643
P ¼ 0.374

y6
P ¼ 0.374
P ¼ 1.00

y6
P ¼ 1.00
P ¼ 1.00

N/A 5.6, [4.23, 7.10],
P ¼ 0.519

y6
P ¼ 0.495

y6
P ¼ 1.00

Cartilage cells N/A 1.6, [�2.13, 5.46], P ¼ 0.519
P ¼ 0.205

2.6, [1.23, 4.10],
P ¼ 0.674
P ¼ 0.495

y3
P ¼ 1.00
P ¼ 0.272

N/A y3
P ¼ 0.116

y3
P ¼ 0.495

y3
P ¼ 1.00

Cartilage Safranin-O
staining

N/A 1.3, [�0.1, 2.77], P ¼ 0.374
P ¼ 0.422

1, [�0.77, 2.10],
P ¼ 0.230
P ¼ 0.789

y1
P ¼ 0.374
P ¼ 0.221

N/A 0.6, [�2.20, 3.54],
P ¼ 0.643

0.5, [�0.10, 2.77],
P ¼ 0.239

1.5, [�0.10, 2.77], P ¼ 0.789

*Cartilage tidemark
integrity

N/A y0 y0 y0 N/A y0 y0 y0

Cartilage total N/A 8, [3.70, 12.30], P ¼ 0.609
P ¼ 0.374

P ¼ 0.870 y10
P ¼ 0.374
P ¼ 0.272

N/A 9.3, [5.54, 13.13],
P ¼ 0.579

9.5, [8.23, 11.10], P ¼ 0.735 10.5, [8.90, 11.77], P ¼ 0.789

The table represents the mean scores for each cohort. 95% confidence intervals are reported in brackets for each estimate.
* No statistics available because all observational values were zero.
y No confidence interval available because all observational values were the same. Comparisons between untreated and treatment groups, and between untreated and sham-operated groups, were performed by two-way

independent t-test at each respective time-point. Comparison between celecoxib and glucosamine were performed and indicated by bold P-values. Non-parametric ManneWhitney U-test was substituted if standard deviation
was zero (i.e., sclerosis scores). In glucosamine group severity of no feature was statistically different from untreated group.
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Fig. 3. Graphs represent the changes of mean scores over time for each treatment cohort. Number of observation at each time-point was n ¼ 3. See Table II for detailed mean scores
and comparisons.
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combined length of signal for each joint, in afive scale grading
system.

Because cysts in this model were mainly bony cysts, only bony
cysts were graded. Cysts were clearly visible on both CT and MRI
and were defined as round structures with no trabeculae, recog-
nizable from hyper-intense signal on T2 fat-suppressed MRI or
black structures (i.e., lack of minerals) on CT. The assessment was
performed for all three bones, primarily on sagittal plane in a
dichotomous grade; absent ¼ 0, present ¼ 1.

Loose bodies were graded based on their number present in the
synovial capsule where; 0 ¼ none, 1 ¼ 1 loose body; 2 ¼ 2 loose
bodies; 3 ¼ 3 or more. The presence of bodies was confirmed after
assessment with axial and sagittal MRI images.

Because of the small size of knee joint in rats, a simple binary
system similar to HIMRISS8 was adopted for grading BMLs. In each
bone, a score of 1 is awarded if there is a BML on T2 fat-suppressed
SEMRI. Additional Gd-enhanced T1 sequences were acquired at the
final time-point.
Modified Mankin's scoring system for OA9,10 was adapted to
evaluate cartilage integrity on H&E and Safranin-O/Fast green
stained histology sections.

To assess inter-observer reliability, two readers blinded to the
treatment cohorts independently reviewed subsets of data at 4 and
12 weeks: a doctoral student trained in CT and MR imaging (AP),
and a board certified, fellowship trained musculoskeletal radiolo-
gist (JJ).

Statistical analysis

Statistical analysis was conducted using SPSS software, version
17.0. For group comparisons, two-tailed independent t-test was
used (P < 0.05). If standard deviations were zero and t-test was not
feasible, two-tailed ManneWhitney U-test was substituted
(P < 0.05). Reliability was assessed by intra-class correlation coef-
ficient or percent agreement for status of each OA feature. In
addition, synovitiseeffusion and subchondral sclerosis were



Table III
Reliability of the scoring system measured by inter-observer correlation coefficient
(ICC) (status of features)

Feature ICC N

Femur osteophyte score 0.756 24
Tibia osteophyte score 0.854 24
Patella osteophyte score 0.849 24
Total osteophyte score 0.853 24
SynovitiseEffusion total score 0.867 43
Femur cyst score 0.790 22
Tibia cyst score 0.647 22
Patella cyst score N/A* 22
Total cyst score 0.819 22
BML total score N/A* 43

* Frequency of BMLwas too low to accurately calculate ICC, thus % agreement was
measured and reported as 93.02. Also, no patellar cyst was observed.

Table IV
Correlation of semi-quantitatively measured scores based on RAKSS with absolute
quantified values measured by micro-CT or micro-MRI

Feature R Significance n

Total osteophyte þ0.801 0.05 6
SynovitiseEffusion þ0.984 0.01 43
Sclerosis medial femur þ0.951 0.01 43
Sclerosis medial tibia þ0.965 0.01 43

A two-tailed Pearson correlation for the data revealed that scores for osteophytes,
synovitis-effusion and sclerosis were significantly correlated with the absolute
values. Therefore, designed system is representative of the actual values of these
features.
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quantified by measuring the length of the occurring feature and
correlation with their respective scores were assessed by Pearson's
correlation. Also, a randomly selected subset of samples (n ¼ 6)
were quantified for volumetric size of osteophytes (% BV/TV) and
correlated with scores. Only a subset was included because this
sample size was sufficient for the purpose of showing the correla-
tion between absolute and semi-quantitative scores, and also the
procedure is laborious and time-consuming.
Results

Generally, in this animal model, most of the changes occurred in
the medial compartment where surgery was performed. The most
evident characteristics were rapid formation of osteophytes within
4 weeks post-surgery, primarily proximal to the MCL and LCL in-
sertions and the margins of the patellofemoral articulating sur-
faces. The majorities of osteophytes were developed by week 4 and
were only mineralized further by elapsing time. Celecoxib treat-
ment significantly reduced enlargement of osteophytes at 4 weeks
(P < 0.01) and 12 weeks (P < 0.05). While significant reduction was
also witnessed at the 8th week for the femur (P < 0.05), tibia, pa-
tella, and total scores were not statistically lower. The mean scores
and comparison between treated and untreated cohorts, as well as
direct comparison between celecoxib and glucosamine are re-
ported in Table II. Fig. 3 shows changes of selected features over
time.

ICC for status of the analyzed features was generally greater
than 0.750 which shows good agreement between observers
(Table III). Good inter-observer agreements show that each feature
can be reliably measured based on the criteria of the RAKSS.
Furthermore, significant differences between sham-operated and
untreated KTI-operated cohorts (Table II), revealed that this system
is sensitive to the changes following surgery and OA progression,
regardless of the type of treatment.
As previously mentioned, continuously progressing features
were quantified for all or a subset of dataset. Table IV represents
significant correlation between absolute quantified measures and
semi-quantitative scores for osteophytes, synovitis-effusion, and
subchondral sclerosis. Subchondral sclerosis scores correlated
strongly with bone plate thickness for both femur and tibia, with
R ¼ þ0.951 and þ0.965, respectively (P < 0.01). Except at week 4,
where sclerosis in the celecoxib group at the medial femoral
condyle was significantly lower compared with untreated or
glucosamine cohorts, all other time-points did not show any sig-
nificant difference regarding femoral or tibial sclerosis.

Inflammatory signs were readily visible by week 4 in all KTI-
operated animals. Synovitis and effusion were scored collectively,
and were not significantly different among groups. The extent of
synovitis-effusion was slightly reduced over time in all groups, but
not significantly. The greatest measure was observed in the
glucosamine group where a score of 4 at weeks 4 and 8 corre-
sponded to a combined length of 3.37 mm and 3.55 mm,
respectively.

Bony cysts were present randomly among all treatment groups
and treatment did not affect their presence. As the disease pro-
gressed, total numbers of cysts increased from 4 to 23 from baseline
to week 12 (combining all 27 animals together). The most promi-
nent sites for cysts were posterior medial tibia and femur, ac-
counting for 39% and 17% of cysts at week 12, respectively.
Occasionally, a few cysts were observed to resolve over time, but
generally cysts persisted until the end-point and new cysts were
formed as well.

Loose bodies were absent at baseline, but started to appear at
week 4 when 6 bodies were present in a total of 27 rats. This
number grew to 10 by week 12. 60% of these bodies were located in
the medial compartment of the joint. Some initially cartilaginous
bodies became calcified later and eventually visible on CT [Fig.1(e)].

Except for occasional ill-defined hyper-intense signals on T2-fat
suppressed MRI, no BML were observed during the 12 weeks
monitoring of animals. However, careful examination of the his-
tological sections revealed histopathological characteristics of BML
such as bone marrow edema or fibrosis [Fig. 4(K), (L)].

Severe cartilage destruction was observed in KTI-operated ani-
mals, likely as a result of aberrant excessive loading and joint
instability. Glucosamine and celecoxib did not prevent cartilage
destruction and almost the entire articular cartilage thickness was
degraded byweek 4 and calcified cartilagewas exposed. By week 8,
calcified cartilage was absent, underlying subchondral bone was
exposed, and eburnation was visibly noticeable in all samples
[Fig. 5]. There was no statistical difference between treatment
groups in any studied feature of cartilage pathology (Table II).
Sham-operated animals did not reveal any cartilage abnormalities.
Discussion

We evaluated two controversial OA therapies in a rat model of
post-traumatic OA. Since current clinical scoring systems for
severity assessment of human OA are not directly transferable for
use in animal studies (because some features assessed in humans
may not be present in animals due to anatomical and biological
differences, or may be different based on the method of OA in-
duction), we first needed to develop a reliable multi-modality
scoring system. The RAKSS scoring system reported here scores
various features relevant to OA progression using MRI and CT. We
found it to be sensitive to disease progression over time and
changes as a result of treatment. Moreover, the reliability tests
showed that changes following OA induction surgery were detec-
ted with a high degree of inter-observer agreement.



Fig. 4. Temporal MRI from a KTI-untreated rat. AeD) Sagittal T1-weighted fat-saturated MRI before and after surgery at 4, 8, and 12 weeks, respectively. EeF) Sagittal T2 fat-
saturated images of the same joint indicating fluctuations in the degree of synovitis-effusion at suprapatellar region and posterior to condyle (arrows). I) Periarticular cyst (ar-
row) on sagittal T2 fat-saturated MRI and the corresponding micro-CT image (J). Inlets represent axial view. K, L) H&E histology sections of medial femur showing pathological
characteristics of BML including bone marrow edema (arrows in K) and bone marrow fibrosis (arrows in L).
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Osteophytes in this model were observed bilaterally, but were
larger in the medial compartment, with the exception of the pa-
tella. Our group has previously investigated osteophyte develop-
ment in a meniscectomy model11, where the pattern was different
andmore pronounced around theMCL and the articulating surfaces
of the femur with the tibia. In contrast to a recent report12, we
found that despite similarly altered mechanical loading, animals
treated with a COX-2 inhibitor drug (i.e., celecoxib) had signifi-
cantly smaller osteophytes 4e12 weeks post-injury. The mecha-
nism for this remains unclear, whether due to direct inhibition of
COX-2 enzyme, or indirect down-regulation of transforming
growth factor-beta 1 (TGF-b1)13,14, IGF-115,16 or other factors
involved in osteophytogenesis. Prostaglandin E2 (PGE2), a metab-
olite of COX-2 known to up-regulate receptor activator of NF-kB
ligand (RANKL) may also play a role by stimulating bone resorption
at sites of osteophytosis and subsequently leading to further
expansion of osteophytes17. Further experiments using higher
doses of celecoxib may prove to be beneficial.

Cysts were clearly detectable on both CT and MRI; however, CT
more accurately detected smaller cysts because of higher spatial
resolution. When scoring cysts, attention must be paid not to
misinterpret anatomical notches in the femoral condyle and tibia
for cysts. Evaluation with multiple planes is therefore strongly
recommended. As previously mentioned, cysts were primarily
observed in the posterior medial compartments where cartilage
was completely destroyed by weeks 4e8. These findings are in
agreement with previous findings in humans5 andmay be linked to
increased loading in the region due to instability of the joint18.



Fig. 5. Histology sections (5�, Safranin-O/Fast green) of femur at transverse plane showing the progression of cartilage loss at 4 and 12 week time-points in animals underwent KTI
surgery. A, B) KTI-untreated; C, D) KTI-celecoxib treated group; E, F) KTI-glucosamine treatment; G, H) Sham-operated control group. Approximately the entire articular cartilage
thickness had been destroyed by week 4 on KTI-operated rats, regardless of treatment. Note formation of osteophytes at junction of articular cartilage with bone.
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In the current study we did not detect any BML in rats on MRI,
despite seeing changes in marrow on histology such as bone
marrow edema and fibrosis19,20 [Fig. 4(K), (L)] that are associated
with BML on MRI of human joints. BML have been studied in
humans extensively in recent years and are associated with pro-
gressive OA by various postulated mechanisms21e23. Moreover,
BMLs have been reported in large animal models24, but not
consistently in small animals. One explanation could be greater
susceptibility artifact at high-field MRI that subsequently results in
inhomogeneous fat suppression that itself may mask BML
signal25,26. In this research fat suppression was optimized individ-
ually for each rat. However, we did not detect BML signal even after
Gd enhancement or on spin-echo T1 images where susceptibility is
minimized. Appel et al.27 correlated the histopathology and MRI
appearance of BML in ankylosing spondylitis and reported that
small areas of histopathological interstitial edema cannot be
detected by MRI. Since synovial fluid was adequately visualized on
SE/fat suppressed sequences, we speculate that BML were not
detected in these rats possibly because of their small size. Partial
volume effect in these small ROIs could also be contributory. Future
studies investigating BMLmay consider using larger animal models
such as dog or rabbit.

Although we used high resolution micro-MRI, the tiny plates of
cartilage in rats were still too thin to be adequately visualized using
conventional pulse-sequences, showing volume averaging with
synovial joint fluid. This was more pronounced in severe OA cases
where most of the cartilage thickness was lost. Cartilage is more
sensitively assessed at histology. In this study, none of the treat-
ments had any effect on preserving cartilage thickness.

Historically, OA was characterized as a non-inflammatory dis-
ease. However, the presence of inflammatory features, such as sy-
novitis and joint effusion in the current model and other studies,
strongly suggest the existence of different sub-types (or pheno-
types) of OA, rather than the traditional classification of primary
and secondary OA28,29. A pathological role for inflammation,
specifically for synovium has been suggested30,31, where secretion
of inflammatory cytokines accelerates cartilage erosion and pro-
motes osteophytosis. Therefore, inflammation may be a relevant
target for treatment of OA. Massicotte et al.15 demonstrated that
prevalence of subchondral sclerosis may be directly related to the
levels of Insulin-like growth factor 1 (IGF-1), so that patients may
be categorized into groups with a high or low risk of sclerosis.
Further research may better explain why patients progress at
different rates and to a different degree, have different symptoms,
and respond differently to treatment.

The KTI surgical model we used is a very rapidly progressing
model for development of OA-like symptoms, since by 4 weeks
osteophytes, joint effusion, subchondral sclerosis and extensive
cartilage degradationwere observed. Symptoms at week 12 already
correspond to late stage OA. Depending on study objectives, future
studies may choose a shorter end-point for this model or a more
subtle injury such as isolated meniscectomy that may produce a
milder arthropathy. However, we deliberately chose a late end-
point (determined by complete degradation of cartilage) for
determining maximal cut-offs in designing the scoring system. The
small number of animals in each group was considered as a limi-
tation of the study. This was due to the considerable expenses of
micro-MRI and micro-CT imaging; however, the temporal nature of
in vivo imaging partly compensates for that. A relatively large
number of t-tests were performed on this small data set, and
approximately 5% of these can be expected to give incorrect results.
This is unlikely to materially affect the conclusions of the study.

In conclusion, herein we report development of a sensitive and
reliable multi-modality scoring system (RAKSS) for evaluation of
OA severity in animal models. This scoring system may help to
precisely evaluate the efficacy of novel compounds for treatment of
OA. Using RAKSS, we conclude that high doses of glucosamine (10
times higher than recommended dose) did not have any effect on
preserving cartilage or any other beneficial effect in this animal
model of PTOA. On the other hand, celecoxib controlled further
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enlargement of osteophytes, but did not show any chon-
droprotective effect using recommended dose. Although due to
small animal numbers, strong conclusions cannot be made and
further studies are required, overall we suggest that celecoxib may
possess some disease-modifying properties for management of OA.
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