34 research outputs found

    Coordinated Voltage and Reactive Power Control of Power Distribution Systems with Distributed Generation

    Get PDF
    Distribution system voltage and VAR control (VVC) is a technique that combines conservation voltage reduction and reactive power compensation to operate a distribution system at its optimal conditions. Coordinated VVC can provide major economic benefits for distribution utilities. Incorporating distributed generation (DG) to VVC can improve the system efficiency and reliability. The first part of this dissertation introduces a direct optimization formulation for VVC with DG. The control is formulated as a mixed integer non-linear programming (MINLP) problem. The formulation is based on a three-phase power flow with accurate component models. The VVC problem is solved with a state of the art open-source academic solver utilizing an outer approximation algorithm. Applying the approach to several test feeders, including IEEE 13-node and 37-node radial test feeders, with variable load demand and DG generation, validates the proposed control. Incorporating renewable energy can provide major benefits for efficient operation of the distribution systems. However, when the number of renewables increases the system control becomes more complex. Renewable resources, particularly wind and solar, are often highly intermittent. The varying power output can cause significant fluctuations in feeder voltages. Traditional feeder controls are often too slow to react to these fast fluctuations. DG units providing reactive power compensation they can be utilized in supplying voltage support when fluctuations in generation occur. The second part of this dissertation focuses on two new approaches for dual-layer VVC. In these approaches the VVC is divided into two control layers, slow and fast. The slow control obtains optimal voltage profile and set points for the distribution control. The fast control layer is utilized to maintain the optimal voltage profile when the generation or loading suddenly changes. The MINLP based VVC formulation is utilized as the slow control. Both local reactive power control of DG and coordinated quadratic programming (QP) based reactive power control is considered as the fast control approaches. The effectiveness of these approaches is studied with test feeders, utility load data, and fast-varying solar irradiance data. The simulation results indicate that both methods achieve good results for VVC with DG

    Single Particle and Fermi Liquid Properties of He-3/--He-4 Mixtures: A Microscopic Analysis

    Full text link
    We calculate microscopically the properties of the dilute He-3 component in a He-3/--He-4 mixture. These depend on both, the dominant interaction between the impurity atom and the background, and the Fermi liquid contribution due to the interaction between the constituents of the He-3 component. We first calculate the dynamic structure function of a He-3 impurity atom moving in He-3. From that we obtain the excitation spectrum and the momentum dependent effective mass. The pole strength of this excitation mode is strongly reduced from the free particle value in agreement with experiments; part of the strength is distributed over high frequency excitations. Above k > 1.7A˚\AA^{-1}$ the motion of the impurity is damped due to the decay into a roton and a low energy impurity mode. Next we determine the Fermi--Liquid interaction between He-4 atoms and calculate the pressure-- and concentration dependence of the effective mass, magnetic susceptibility, and the He-3--He-3 scattering phase shifts. The calculations are based on a dynamic theory that uses, as input, effective interactions provided by the Fermi hypernetted--chain theory. The relationship between both theories is discussed. Our theoretical effective masses agree well with recent measurements by Yorozu et al. (Phys. Rev. B 48, 9660 (1993)) as well as those by R. Simons and R. M. Mueller (Czekoslowak Journal of Physics Suppl. 46, 201 (1996)), but our analysis suggests a new extrapolation to the zero-concentration limit. With that effective mass we also find a good agreement with the measured Landau parameter F_0^a.Comment: 47 pages, 15 figure

    Interferon-gamma and IL-5 associated cell-mediated immune responses to HPV16 E2 and E6 distinguish between persistent oral HPV16 infections and noninfected mucosa

    Get PDF
    Objectives: Natural history of human papillomavirus (HPV) infection in the head and neck region is poorly understood, and their impact on collective HPV-specific immunity is not known.Materials and methods: In this study, we have performed a systematic analysis of HPV16-specific cell-mediated immunity (CMI) in 21 women with known oral and genital HPV DNA status and HPV serology (Ab) based on 6-year follow-up data. These women being a subgroup from the Finnish Family HPV Study were recalled for blood sampling to be tested for their CMI-responses to HPV16 E2, E6, and E7 peptides.Results: The results showed that HPV16 E2-specific lymphocyte proliferation was more prevalent in women who tested HPV16 DNA negative in oral mucosa and were either HPV16 seropositive or negative than in HPV16 DNA+/Ab+ women (p = 0.046 and p = 0.035). In addition, the HPV16 DNA-/Ab- women most often displayed E6-specific proliferation (p = 0.020). Proportional cytokine profiles indicated that oral HPV16-negative women were characterized by prominent IFN-gamma and IL-5 secretion not found in women with persisting oral HPV16 (p = 0.014 and p = 0.040, respectively).Conclusions: Our results indicate that the naturally arising immune response induced by oral HPV infections displays a mixed Th1/Th2/Th17 cytokine profile while women with persisting oral HPV16 might have an impaired HPV16-specific CMI, shifted partly toward a Th2 profile, similarly as seen earlier among patients with high-grade genital HPV lesions. Thus, the lack of HPV 16 E2 and E6 specific T memory cells and Th2 cytokines might also predispose women for persistent oral HPV16 infection which might be related to the risk of cancer.Experimental cancer immunology and therap
    corecore