44,770 research outputs found

    Strange pulsation modes in luminous red giants

    Get PDF
    We show that the spectrum of radial pulsation modes in luminous red giants consists of both normal modes and a second set of modes with periods similar to those of the normal modes. These additional modes are the red giant analogues of the strange modes found in classical Cepheids and RR Lyrae variables. Here, we describe the behaviour of strange and normal modes in luminous red giants and discuss the dependence of both the strange and normal modes on the outer boundary conditions. The strange modes always appear to be damped, much more so than the normal modes. They should never be observed as self-excited modes in real red giants but they may be detected in the spectrum of solar-like oscillations. A strange mode with a period close to that of a normal mode can influence both the period and growth rate of the normal mode.Comment: 6 pages, 5 figures, accepted by MNRA

    Optical and near-infrared spectrophotometric properties of Long Period Variables and other luminous red stars

    Get PDF
    Based on a new and large sample of optical and near-infrared spectra obtained at the Mount Stromlo and Siding Spring Observatories (Lancon & Wood 1998; Lancon & Wood, in preparation), spectrophotometric properties of cool oxygen- and carbon-rich Long Period Variables and supergiants are presented. Temperatures of oxygen-rich stars are assigned by comparison with synthetic spectra computed from up-to-date oxygen-rich model atmosphere grids. The existence of reliable optical and near-infrared temperature indicators is investigated. A narrow relation between the bolometric correction BC(I) and the broad-band colour I-J is obtained for oxygen-rich cool stars. The ability of specific near-infrared indices to separate luminosity classes, atmospheric chemistry or variability subtypes is discussed. Some comments are also given on extinction effects, water band strengths in Long Period Variables and the evaluation of 12CO/13CO ratio in red giants.Comment: 14 pages, 21 figures, Latex, accepted for publication in Astronomy and Astrophysics main journal. Also available at http://www-astro.ulb.ac.be/~ralvarez

    A Long-Term Hydrologically-Based Data Set of Land Surface Fluxes and States for the Conterminous United States

    Get PDF
    A frequently encountered difficulty in assessing model-predicted land–atmosphere exchanges of moisture and energy is the absence of comprehensive observations to which model predictions can be compared at the spatial and temporal resolutions at which the models operate. Various methods have been used to evaluate the land surface schemes in coupled models, including comparisons of model-predicted evapotranspiration with values derived from atmospheric water balances, comparison of model-predicted energy and radiative fluxes with tower measurements during periods of intensive observations, comparison of model-predicted runoff with observed streamflow, and comparison of model predictions of soil moisture with spatial averages of point observations. While these approaches have provided useful model diagnostic information, the observation-based products used in the comparisons typically are inconsistent with the model variables with which they are compared—for example, observations are for points or areas much smaller than the model spatial resolution, comparisons are restricted to temporal averages, or the spatial scale is large compared to that resolved by the model. Furthermore, none of the datasets available at present allow an evaluation of the interaction of the water balance components over large regions for long periods. In this study, a model-derived dataset of land surface states and fluxes is presented for the conterminous United States and portions of Canada and Mexico. The dataset spans the period 1950–2000, and is at a 3-h time step with a spatial resolution of ⅛ degree. The data are distinct from reanalysis products in that precipitation is a gridded product derived directly from observations, and both the land surface water and energy budgets balance at every time step. The surface forcings include precipitation and air temperature (both gridded from observations), and derived downward solar and longwave radiation, vapor pressure deficit, and wind. Simulated runoff is shown to match observations quite well over large river basins. On this basis, and given the physically based model parameterizations, it is argued that other terms in the surface water balance (e.g., soil moisture and evapotranspiration) are well represented, at least for the purposes of diagnostic studies such as those in which atmospheric model reanalysis products have been widely used. These characteristics make this dataset useful for a variety of studies, especially where ground observations are lacking
    • …
    corecore