301 research outputs found

    Design of small Stirling dynamic isotope power system for robotic space missions

    Get PDF
    Design of a multihundred-watt Dynamic Isotope Power System (DIPS) based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) technology is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. Unlike previous DIPS designs which were based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled down to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Preliminary characterization of units in the output power ranges 200-600 We indicate that on an electrical watt basis the GPHS/small Stirling DIPS will be roughly equivalent to an advanced RTG in size and mass but require less than a third of the isotope inventory

    Design of multihundredwatt DIPS for robotic space missions

    Get PDF
    Design of a dynamic isotope power system (DIPS) general purpose heat source (GPHS) and small free piston Stirling engine (FPSE) is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to SEI precursor missions. These are multihundredwatt missions. The incentive for any dynamic system is that it can save fuel which reduces cost and radiological hazard. However, unlike a conventional DIPS based on turbomachinery converions, the small Stirling DIPS can be advantageously scaled to multihundred watt unit size while preserving size and weight competitiveness with RTG's. Stirling conversion extends the range where dynamic systems are competitive to hundreds of watts (a power range not previously considered for dynamic systems). The challenge of course is to demonstrate reliability similar to RTG experience. Since the competative potential of FPSE as an isotope converter was first identified, work has focused on the feasibility of directly integrating GPHS with the Stirling heater head. Extensive thermal modeling of various radiatively coupled heat source/heater head geometries were performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within safe operating limits under all conditions including shutdown of one engine. Based on these results, preliminary characterizations of multihundred watt units were established

    Design and Implementation of an Instrumented Cane for Gait Recognition

    Get PDF
    Independent mobility is an important aspect of an individual's life and must sometimes be augmented by use of an assistive device such as a wheeled walker or cane following a fall, injury, or functional decline. Physical therapists perform functional gait assessments to gauge the probability of an individual experiencing a fall and often recommend use of a walker, cane, or walking stick to decrease fall risk. Our team has developed a clinical assessment tool centered on a standard walking cane embedded system that can enhance a therapist's observation-based gait assessment with use of additional objective and quantitative data. This system can be utilized to detect timing and speed of cane placement, angular acceleration of the cane, and amounts of weight borne on the cane. This system is designed to assist physical therapists at the basic level in collection of objective data during gait analysis, to facilitate appropriate assistive gait device prescription, to provide patients and therapists feedback during gait training, and to reduce wrist and shoulder injuries with cane usage. However, more importantly, using the plethora of objective data that can be obtained from this cane, automated gait analysis and gait pattern classification can be performed to understand a patient's walking performance

    Strategic toolkits: seniority, usage and performance in the German SME machinery and equipment sector

    Get PDF
    This paper examines the strategic tool kit, from a human resource management (HRM) perspective, in terms of usage and impact. Research to date has tended to consider usage, assuming to a certain extent that knowledge and understanding of particular tools suggest that practitioners value them. The research on which this paper is based builds upon the idea that usage indicates satisfaction, but develops the usage theme to investigate which decision-makers are actually engaged in both tool appliance and the strategic process. Of particular interest to the researchers are the educational background, age and seniority of the decision-makers. In addition, potential links with HRM and organizational performance are also explored. The context of the research, the German machinery and equipment sector, provides an insight into the industry's ability to sustain growth in face of increasing international competition. The paper calls for a greater awareness, from a human resource perspective, and utilization of strategic management practice and associated decision-making aids

    Hyperextended Scalar-Tensor Gravity

    Get PDF
    We study a general Scalar-Tensor Theory with an arbitrary coupling funtion ω(ϕ)\omega (\phi ) but also an arbitrary dependence of the ``gravitational constant'' G(ϕ)G(\phi ) in the cases in which either one of them, or both, do not admit an analytical inverse, as in the hyperextended inflationary scenario. We present the full set of field equations and study their cosmological behavior. We show that different scalar-tensor theories can be grouped in classes with the same solution for the scalar field.Comment: latex file, To appear in Physical Review

    Analysis of radiation-induced cell death in head and neck squamous cell carcinoma and rat liver maintained in microfluidic devices

    Get PDF
    Objective The aim of this study was to investigate how head and neck squamous cell carcinoma (HNSCC) tissue biopsies maintained in a pseudo in vivo environment within a bespoke microfluidic device respond to radiation treatment. Study Design Feasibility study. Setting Tertiary referral center. Subjects and Methods Thirty-five patients with HNSCC were recruited, and liver tissue from 5 Wistar rats was obtained. A microfluidic device was used to maintain the tissue biopsy samples in a viable state. Rat liver was used to optimize the methodology. HNSCC was obtained from patients with T1-T3 laryngeal or oropharyngeal SCC; N1-N2 metastatic cervical lymph nodes were also obtained. Irradiation consisted of single doses of between 2 Gy and 40 Gy and a fractionated course of 5×2 Gy. Cell death was assessed in the tissue effluent using the soluble markers lactate dehydrogenase (LDH) and cytochrome c and in the tissue by immunohistochemical detection of cleaved cytokeratin18 (M30 antibody). Results A significant surge in LDH release was demonstrated in the rat liver after a single dose of 20 Gy; in HNSCC, it was seen after 40 Gy compared with the control. There was no significant difference in cytochrome c release after 5 Gy or 10 Gy. M30 demonstrated a dose-dependent increase in apoptotic index for a given increase in single-dose radiotherapy. There was a significant increase in apoptotic index between 1×2 Gy and 5×2 Gy. Conclusion M30 is a superior method compared with soluble markers in detecting low-dose radiation-induced cell death. This microfluidic technique can be used to assess radiation-induced cell death in HNSCC and therefore has the potential to be used to predict radiation response

    Cross-species models of human melanoma

    Get PDF
    Although transformation of melanocytes to melanoma is rare, the rapid growth, systemic spread, as well as the chemoresistance of melanoma present significant challenges for patient care. Here we review animal models of melanoma, including murine, canine, equine, and zebrafish models, and detail the immense contribution these models have made to our knowledge of human melanoma development, and to melanocyte biology. We also highlight the opportunities for cross‐species comparative genomic studies of melanoma to identify the key molecular events that drive this complex disease. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland

    Clinical characteristics and outcome of dogs with presumed primary renal lymphoma

    Get PDF
    Objectives: To characterise the presentation, clinicopathologic data and outcome of 29 dogs with presumed primary renal lymphoma. Materials and methods: Retrospective analysis of medical records of dogs with suspected primary renal lymphoma from 11 institutions. Results: All dogs were substage b, and lethargy and gastrointestinal signs were common presenting complaints, as were azotaemia (n=25; 86%) and erythrocytosis (n=15; 51%) on biochemical testing. Ultrasonography typically revealed bilateral renal lesions (n=23; 79%), renomegaly (n=22; 76%) and abdominal lymphadenopathy (n=14; 48%). Chemotherapy was the only treatment in 23 dogs, of which 11 responded, all considered partial responses. For all dogs the median progression-free survival and median overall survival times were 10 days (range: 1 to 126) and 12 days (range: 1 to 212), respectively, and for dogs that responded to chemotherapy 41 days (range: 10 to 126) and 47 days (range: 10 to 212), respectively. Clinical significance: Primary renal lymphoma in dogs appears to be associated with a poor prognosis and short-lived response to chemotherapy
    corecore