367 research outputs found

    Theoretical analysis of a single and double reflection atom interferometer in a weakly-confining magnetic trap

    Full text link
    The operation of a BEC based atom interferometer, where the atoms are held in a weakly-confining magnetic trap and manipulated with counter-propagating laser beams, is analyzed. A simple analytic model is developed to describe the dynamics of the interferometer. It is used to find the regions of parameter space with high and low contrast of the interference fringes for both single and double reflection interferometers. We demonstrate that for a double reflection interferometer the coherence time can be increased by shifting the recombination time. The theory is compared with recent experimental realizations of these interferometers.Comment: 25 pages, 6 figure

    Plasma Magnetohydrodynamics and Energy Conversion

    Get PDF
    Contains reports on four research projects.U. S. Air Force (Research and Technology Division) under Contract AF33(615)-1083 with the Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohi

    Physical Electronics and Surface Physics

    Get PDF
    Contains research objectives and reports on four research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E)National Aeronautics and Space Administration (Grant NGR-22-099-091)National Aeronautics and Space Administration (Grant NsG-496

    Electrochemical Formation of Germanene: pH 4.5

    Get PDF
    Germanene is a single layer allotrope of Ge, with a honeycomb structure similar to graphene. This report concerns the electrochemical formation of germanene in a pH 4.5 solution. The studies were performed using in situ Electrochemical Scanning Tunneling Microscopy (EC-STM), voltammetry, coulometry, surface X-ray diffraction (SXRD) and Raman spectroscopy to study germanene electrodeposition on Au(111) terraces. The deposition of Ge is kinetically slow and stops after 2–3 monolayers. EC-STM revealed a honeycomb (HC) structure with a rhombic unit cell, 0.44 ± 0.02 nm on a side, very close to that predicted for germanene in the literature. Ideally the HC structure is a continuous sheet, with six Ge atoms around each hole. However, only small domains, surrounded by defects, of this structure were observed in this study. The small coherence length and multiple rotations domains made direct observation with surface X-ray diffraction difficult. Raman spectroscopy was used to investigate the multi-layer Ge deposits. A peak near 290 cm^(−1), predicted to correspond to germanene, was observed on one particular area of the sample, while the rest resembled amorphous germanium. Electrochemical studies of germanene showed limited stability when exposed to oxygen

    Radio-frequency dressed state potentials for neutral atoms

    Get PDF
    Potentials for atoms can be created by external fields acting on properties like magnetic moment, charge, polarizability, or by oscillating fields which couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground and electronically excited states of an atom with light. Here we present an experimental investigation of the remarkable properties of potentials derived from radio-frequency (RF) coupling between electronic ground states. The coupling is magnetic and the vector character allows to design state dependent potential landscapes. On atom chips this enables robust coherent atom manipulation on much smaller spatial scales than possible with static fields alone. We find no additional heating or collisional loss up to densities approaching 101510^{15} atoms / cm3^3 compared to static magnetic traps. We demonstrate the creation of Bose-Einstein condensates in RF potentials and investigate the difference in the interference between two independently created and two coherently split condensates in identical traps. All together this makes RF dressing a powerful new tool for micro manipulation of atomic and molecular systems

    Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers

    Get PDF
    Single nucleotide polymorphism (SNP) discovery and genotyping are essential to genetic mapping. There remains a need for a simple, inexpensive platform that allows high-density SNP discovery and genotyping in large populations. Here we describe the sequencing of restriction-site associated DNA (RAD) tags, which identified more than 13,000 SNPs, and mapped three traits in two model organisms, using less than half the capacity of one Illumina sequencing run. We demonstrated that different marker densities can be attained by choice of restriction enzyme. Furthermore, we developed a barcoding system for sample multiplexing and fine mapped the genetic basis of lateral plate armor loss in threespine stickleback by identifying recombinant breakpoints in F2 individuals. Barcoding also facilitated mapping of a second trait, a reduction of pelvic structure, by in silico re-sorting of individuals. To further demonstrate the ease of the RAD sequencing approach we identified polymorphic markers and mapped an induced mutation in Neurospora crassa. Sequencing of RAD markers is an integrated platform for SNP discovery and genotyping. This approach should be widely applicable to genetic mapping in a variety of organisms

    Tcf7l2 is required for left-right asymmetric differentiation of habenular neurons.

    Get PDF
    BACKGROUND: Although left-right asymmetries are common features of nervous systems, their developmental bases are largely unknown. In the zebrafish epithalamus, dorsal habenular neurons adopt medial (dHbm) and lateral (dHbl) subnuclear character at very different frequencies on the left and right sides. The left-sided parapineal promotes the elaboration of dHbl character in the left habenula, albeit by an unknown mechanism. Likewise, the genetic pathways acting within habenular neurons to control their asymmetric differentiated character are unknown. RESULTS: In a forward genetic screen for mutations that result in loss of habenular asymmetry, we identified two mutant alleles of tcf7l2, a gene that encodes a transcriptional regulator of Wnt signaling. In tcf7l2 mutants, most neurons on both sides differentiate with dHbl identity. Consequently, the habenulae develop symmetrically, with both sides adopting a pronounced leftward character. Tcf7l2 acts cell automously in nascent equipotential neurons, and on the right side, it promotes dHbm and suppresses dHbl differentiation. On the left, the parapineal prevents this Tcf7l2-dependent process, thereby promoting dHbl differentiation. CONCLUSIONS: Tcf7l2 is essential for lateralized fate selection by habenular neurons that can differentiate along two alternative pathways, thereby leading to major neural circuit asymmetries
    • …
    corecore