3,111 research outputs found

    Persistent current formation in a high-temperature Bose-Einstein condensate: an experimental test for c-field theory

    Get PDF
    Experimental stirring of a toroidally trapped Bose-Einstein condensate at high temperature generates a disordered array of quantum vortices that decays via thermal dissipation to form a macroscopic persistent current [T. W. Neely em et al. arXiv:1204.1102 (2012)]. We perform 3D numerical simulations of the experimental sequence within the Stochastic Projected Gross-Pitaevskii equation using ab initio determined reservoir parameters. We find that both damping and noise are essential for describing the dynamics of the high-temperature Bose field. The theory gives a quantitative account of the formation of a persistent current, with no fitted parameters.Comment: v2: 7 pages, 3 figures, new experimental data and numerical simulation

    Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein Condensates

    Full text link
    We study the Kelvin mode excitations on a vortex line in a three-dimensional trapped Bose-Einstein condensate at finite temperature. Our stochastic Gross-Pitaevskii simulations show that the activation of these modes can be suppressed by tightening the confinement along the direction of the vortex line, leading to a strong suppression in the vortex decay rate as the system enters a regime of two-dimensional vortex dynamics. As the system approaches the condensation transition temperature we find that the vortex decay rate is strongly sensitive to dimensionality and temperature, observing a large enhancement for quasi-two-dimensional traps. Three-dimensional simulations of the recent vortex dipole decay experiment of Neely et al. [Phys. Rev. Lett. 104, 160401 (2010)] confirm two-dimensional vortex dynamics, and predict a dipole lifetime consistent with experimental observations and suppression of Kelvon-induced vortex decay in highly oblate condensates.Comment: 8 pages, 8 figure

    Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate

    Get PDF
    We present experimental and theoretical results for the changes in the optical-plasmon resonance of gold-nanoparticle dimers immobilized on a surface when coated with an organic dielectric material. The plasmon band of a nanoparticle dimer shifts to a higher wavelength when the distance between neighboring particles is decreased, and a well-separated second peak appears. This phenomenon is called cross-talk. We find that an organic coating lets cross-talk start at larger separation distances than for uncoated dimers by bridging the gap between immobilized nanoparticles (creating optical clusters). We study this optical clustering effect as a function of the polarization of the applied light, of the inter-particle distance, of the surrounding environment, and of the optical properties of the coating layer. Theoretical discrete-dipole approximation calculations support the experimental absorption spectroscopy results of gold nanoparticles on glass substrates and on optical waveguides

    Shifts in Southern Wisconsin Forest Canopy and Understory Richness, Composition, and Heterogeneity

    Get PDF
    We resurveyed the under- and overstory species composition of 94 upland forest stands in southern Wisconsin in 2002–2004 to assess shifts in canopy and understory richness, composition, and heterogeneity relative to the original surveys in 1949–1950. The canopy has shifted from mostly oaks (Quercus spp.) toward more mesic and shade-tolerant trees (primarily Acer spp.). Oak-dominated early-successional stands and those on coarse, nutrient-poor soils changed the most in canopy composition. Understories at most sites (80%) lost native species, with mean species density declining 25% at the 1-m2 scale and 23.1% at the 20-m2 scale. Woody species have increased 15% relative to herbaceous species in the understory despite declining in absolute abundance. Initial canopy composition, particularly the abundance of red oaks (Quercus rubra and Q. velutina), predicted understory changes better than the changes observed in the overstory. Overall rates of native species loss were greater in later-successional stands, a pattern driven by differential immigration rather than differential extirpation. However, understory species initially found in early-successional habitats declined the most, particularly remnant savanna taxa with narrow or thick leaves. These losses have yet to be offset by compensating increases in native shade-adapted species. Exotic species have proliferated in prevalence (from 13 to 76 stands) and relative abundance (from 1.2% to 8.4%), but these increases appear unrelated to the declines in native species richness and heterogeneity observed. Although canopy succession has clearly influenced shifts in understory composition and diversity, the magnitude of native species declines and failure to recruit more shade-adapted species suggest that other factors now act to limit the richness, heterogeneity, and composition of these communities

    Characteristics of Two-Dimensional Quantum Turbulence in a Compressible Superfluid

    Get PDF
    Under suitable forcing a fluid exhibits turbulence, with characteristics strongly affected by the fluid's confining geometry. Here we study two-dimensional quantum turbulence in a highly oblate Bose-Einstein condensate in an annular trap. As a compressible quantum fluid, this system affords a rich phenomenology, allowing coupling between vortex and acoustic energy. Small-scale stirring generates an experimentally observed disordered vortex distribution that evolves into large-scale flow in the form of a persistent current. Numerical simulation of the experiment reveals additional characteristics of two-dimensional quantum turbulence: spontaneous clustering of same-circulation vortices, and an incompressible energy spectrum with k−5/3k^{-5/3} dependence for low wavenumbers kk and k−3k^{-3} dependence for high kk.Comment: 7 pages, 7 figures. Reference [29] updated for v
    • …
    corecore