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SHIFTS IN SOUTHERN WISCONSIN FOREST CANOPY AND UNDERSTORY
RICHNESS, COMPOSITION, AND HETEROGENEITY

DAVID A. ROGERS,1 THOMAS P. ROONEY,2 DANIEL OLSON,1 AND DONALD M. WALLER
1,3

1Department of Botany, University of Wisconsin–Madison, 430 Lincoln Drive, Madison, Wisconsin 53706 USA
2Department of Biological Sciences, 236 BH, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio 45435 USA

Abstract. We resurveyed the under- and overstory species composition of 94 upland
forest stands in southern Wisconsin in 2002–2004 to assess shifts in canopy and understory
richness, composition, and heterogeneity relative to the original surveys in 1949–1950. The
canopy has shifted from mostly oaks (Quercus spp.) toward more mesic and shade-tolerant
trees (primarily Acer spp.). Oak-dominated early-successional stands and those on coarse,
nutrient-poor soils changed the most in canopy composition. Understories at most sites (80%)
lost native species, with mean species density declining 25% at the 1-m2 scale and 23.1% at the
20-m2 scale. Woody species have increased 15% relative to herbaceous species in the
understory despite declining in absolute abundance. Initial canopy composition, particularly
the abundance of red oaks (Quercus rubra and Q. velutina), predicted understory changes
better than the changes observed in the overstory. Overall rates of native species loss were
greater in later-successional stands, a pattern driven by differential immigration rather than
differential extirpation. However, understory species initially found in early-successional
habitats declined the most, particularly remnant savanna taxa with narrow or thick leaves.
These losses have yet to be offset by compensating increases in native shade-adapted species.
Exotic species have proliferated in prevalence (from 13 to 76 stands) and relative abundance
(from 1.2% to 8.4%), but these increases appear unrelated to the declines in native species
richness and heterogeneity observed. Although canopy succession has clearly influenced shifts
in understory composition and diversity, the magnitude of native species declines and failure
to recruit more shade-adapted species suggest that other factors now act to limit the richness,
heterogeneity, and composition of these communities.

Key words: biotic homogenization; oak forest; shade tolerance; species loss; succession; understory.

INTRODUCTION

At the time of European settlement, southern

Wisconsin was a patchy mosaic of woodland and

prairie, with a predominance of oak savanna (Curtis

1959) likely maintained by fires (Dorney 1981). Forests

occurred where natural firebreaks (Leitner 1991) and

moist microclimates favored trees (Kline and Cottam

1979). Following European settlement, fire suppression

allowed oak forests to establish more broadly (Gleason

1922, Cottam 1949). Work by Cottam (1949), Larsen

(1953), and McIntosh (1957) led Curtis (1959) to

generalize that without fire or other disturbance, oak

would remain dominant for only a single generation,

except on xeric sites. Since then, oak forests have

declined across much of eastern and Midwestern North

America, with oaks being replaced by shade-tolerant

trees in the canopy and the understory (Peet and Loucks

1977, McCune and Cottam 1985, Rentch and Hicks

2005). These shifts alter the light environment (Fralish

1997), favoring plants with adaptations to shade

(Givnish 1987). These declines in oak abundance

support the view that fire suppression, succession, pests,

and pathogens have all acted to diminish oak dominance

(Abrams 1992, 2003, 2005, Abrams and Nowacki 1992,

Lorimer 1993, 2003, Fralish 2004). Simultaneous expan-
sions of agriculture and development also reduced many

of these forests to smaller and more isolated patches

(Sharpe et al. 1987, Radeloff et al. 2005).

Although the expansion of maples and other shade-

tolerant, mesic species in forests previously dominated

by oaks is well documented (Shotola et al. 1992, Fralish

2004, Ozier et al. 2006, Spyreas and Matthews 2006), it

is not clear how this trend is influencing the structure,

dynamics, or composition of the forest understory.

Although shrubs and herbaceous plants often receive

less attention from researchers than trees, the forest

understory is of particular interest, as this layer supports

most of the plant diversity present in temperate forests
and provides critical resources for game animals like

white-tailed deer (Odocoileus virginianus) and Wild

Turkey (Meleagris gallopavo), as well as insect pollina-

tors, predatory arthropods, and parasitoids that provide

critical ecosystem services (Landis et al. 2000, West-

erkamp and Gottsberger 2000).

We often lack baseline data for assessing changes in

the composition of understory communities, especially
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at larger spatial scales. Here, we transcend this

limitation by accessing the high-quality data collected
by the University of Wisconsin Plant Ecology Labora-

tory (PEL) half a century ago. The PEL surveyed the
vegetation at .1000 sites across Wisconsin in the 1940s

and 1950s, providing a quantitative description of the
state’s plant communities summarized in The Vegetation
of Wisconsin (Curtis 1959). Because the data were

carefully archived, the same stands could be relocated
and sampled to measure changes in these plant

communities over time. These surveys have proved
useful for analyzing long-term (40–55 year) ecological

changes in remnant prairies (Leach and Givnish 1996,
Milbauer and Leach 2007) and upland forests in

northern Wisconsin (Rooney et al. 2004a, b, Wiegmann
and Waller 2006). Studies so far have revealed major

shifts in community composition, even at less disturbed
and formally protected sites.

Here, we report changes occurring over the last 50þ
years in 94 upland forest stands distributed across

southern Wisconsin (Curtis and McIntosh 1951, Whit-
ford and Saluman 1954). We expected greater rates of

understory species losses and community homogeniza-
tion in southern forests than those observed in northern

forests (Rooney et al. 2004b), as southern forests have
been more broadly affected by fire suppression, habitat
fragmentation, and development (Sharpe et al. 1987,

Fralish 1997, Radeloff et al. 2005). Our goal was to
characterize the nature and rate of changes that have

occurred in southern Wisconsin upland forests, empha-
sizing changes in oak dominance and the coincident

changes in the forest understory. Here we report changes
within sites in species richness and composition as well

as shifts in patterns of heterogeneity among sites. We
focus on how changes in species richness and compo-

sition in each layer reflect site and forest conditions at
the time of the PEL survey, and links between changes in

the overstory and understory. Because succession is an
important factor driving ecological change in southern

Wisconsin forests (Cottam 1949, Curtis 1959, Peet and
Loucks 1977, Lorimer 2003), we expected changes in

understory community composition to be strongly
linked with shifts in canopy conditions. We also
expected understory communities to be undergoing

biotic homogenization (McKinney and Lockwood
1999, Olden and Poff 2003), as shade-tolerant, late-

successional understory species replace more light-
demanding species (Cottam 1949, Bray 1958, Reid

1964). We are currently investigating how surrounding
landscape conditions affect understory dynamics and

invasions of exotic plants in these forests.

METHODS

Study area

Our study sites were distributed throughout Southern
Wisconsin in the prairie–forest transition zone of the

Eastern Deciduous Forest Province (Albert 1995: Fig.
1). Elevation ranges from 177 to 488 m above sea level

and the climate is continental, with precipitation ranging

from 61 to 84 cm from west to east. Topography varies

between the glaciated region to the east dominated by

glacial till plains, moraines, drumlins, and outwash

plains, and the unglaciated ‘‘driftless’’ area to the west, a

highly dissected upland of Ordovician origin with

agriculture on most valley bottoms and many forested

slopes. The unglaciated western region also has lower

population and road densities than the eastern glaciated

region (Radeloff et al. 2005). We generally expected

early-successional stands to retain more species, as

richness often peaks in middle phases of forest

succession, with oak woodland supporting both shade-

tolerant and shade-intolerant species (Loucks 1970,

Auclair and Goff 1971).

Site selection and vegetation sampling

In the original survey, the PEL sampled the compo-

sition, density, and dominance of canopy trees generally

using the random pairs method (Cottam and Curtis

1956) at 40 points spaced evenly 15–20 m apart along a

square-shaped transect located at least 30 m from the

forest edge. At 20 of these 40 points, they recorded the

presence/absence of all herb, shrub, vine, and tree

seedling species in 1-m2 quadrats. They also compiled

a ‘‘walk-through’’ list of all vascular plants for each site.

We resampled all sites that retained their tree canopy

except for residential yards, tree plantations, and stands

used for pasture. We included forest patches that

occurred in partly residential areas if they were

undeveloped and .6 ha. Of the 114 original PEL sites

with quantitative data, 16 sites (14%) were highly

FIG. 1. Map of the 94 study sites (shown as black circles) in
southern Wisconsin.
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degraded or lost to residential or commercial use (14

sites), cattle grazing (1 site), or cropland (1 site). We

were refused access to four sites. We resurveyed the

remaining 94 stands (Fig. 1) in 2002–2004 (henceforth

‘‘2004’’) using identical but more intensive methods. We

chose to retain the original methods to avoid bias due to

changes in sampling scheme and to allow for direct

methodological comparisons with earlier results.

Working from the original hand-drawn maps and site

descriptions, we relocated each stand and sampled the

area within the stand that was most similar to the

original description in terms of slope, topography, and

canopy composition. To account for uncertainty in the

exact location of the original survey and test for

variability in observed trends, we replicated canopy

sampling two times (160 trees per site) and sampled the

understory at 80 (instead of 20) points. Replicates were

placed within homogenous portions of the stand and,

when necessary, stratified by disturbance history.

Replicate No. 1 was assigned to the location that best

matched the stand originally described. We also noted

any evidence for and the estimated intensity of past

logging activity based on the density of stumps.

We collected soil samples from 10 randomly dispersed

points within each site, sampling at least 300 cm3 from

the top 10 cm of soil. These samples were pooled and

refrigerated until they were analyzed by the University

of Wisconsin Soil and Plant Analysis Laboratory for soil

texture (percentage of sand, silt, and clay) and constit-

uents (percentage of organic matter, pH, and percentage

of total nitrogen, phosphorus, potassium, calcium, and

magnesium). We assumed that soil texture in 2004

reflected the texture it had in 1950, but note that changes

in vegetation and litter may have caused some changes

(Van Breemen and Finzi 1998). Principal components

analysis of the soil variables returned a three-dimen-

sional solution explaining 80.2% of the variance. The

first principal component (PC1) mostly reflected fertility

(pH, % organic matter, percentage of N, and parts per

million of Ca and Mg), and explained 50% of the

variance. PC2 mostly reflected soil texture (percentage

of sand and silt) and explained an additional 19% of the

variance. PC3 correlated strongly with percentage of

clay and soil P concentrations and explained an

additional 10% of the variance. We use these extracted

principal components to represent variation in soil

conditions across sites.

Taxon and sampling standardization

We identified all taxa to species using keys from

Gleason and Cronquist (1991). Any plant not positively

identified in the field was collected and later identified by

specialists (voucher specimens on deposit at the Univer-

sity of Wisconsin Herbarium). From the original PEL

field data, we compiled a full species list, translating the

various names, abbreviations, and codes used in the

original data to current nomenclature (University of

Wisconsin Herbarium). In some cases, the PEL lumped

what are now recognized as distinct species, split taxa

that are now combined, or applied inconsistent taxo-

nomic resolution between observers. When necessary,

we combined taxa into the next highest taxonomic group

(e.g., Carex spp). To assess the effects of these decisions,

we compared estimates of key response variables (e.g.,

species loss and biotic homogenization) at different

levels of taxonomic resolution, and found that although

point estimates of the amount of species loss and

homogenization shift with variation in taxonomic

resolution, the relationships of these response variables

to various predictor variables remain qualitatively and

quantitatively similar (Rogers 2006).

Because sample sizes were several times higher in 2004

than in 1950, we standardized the sample size for the

understory to 20 1-m2 quadrats, and standardized tree

samples to 80 individuals, matching sample sizes in 1950.

Because estimates of species richness, composition, and

heterogeneity between replicates were highly correlated

and related similarly to the predictor variables (Rogers

2006), we only report here the results from the first

replicate.

Analyses

We estimated tree density (stems per hectare), average

basal area, and total basal area per hectare for each

stand in each time period from the random pairs data

(Cottam and Curtis 1949, 1956). We then assessed

changes in density and basal area using a paired t test.

To assess the effects of initial canopy composition and

succession, we used the ‘‘successional adaptation values’’

(SAV) developed by Peet and Loucks (1977) for

southern Wisconsin forest trees. Peet and Loucks

applied principal components analysis on tree size class

data (from 30 of these original PEL sites) to rank

canopy species from 1 to 10, according to their

increasing dominance in smaller size classes, reflecting

their ability to survive in late-successional stands. For

each site, we computed a Successional Index (SI) value

in each time period by averaging the SAV values for all

trees present at each site, weighted by their relative

abundance. Because oaks are a keystone species in this

system, we also calculated declines in abundance and

dominance for all Quercus species. Finally, as a direct

measure of shifts in canopy composition, we calculated

overstory stability as the compositional similarity of

each site to itself 55 years later using the Bray-Curtis

similarity metric.

We compared estimates of canopy species richness per

stand between the two time periods using a paired t test.

For each species in each stand, we tallied abundance

(number of stems observed), relative abundance, average

basal area per stem, and relative basal area ([abundance

3 average basal area]/total basal area). We then used G

tests to determine whether individual species increased

or decreased through time across all sites.

In the understory, we compared richness at several

spatial scales, starting with the regional species pool. We

DAVID A. ROGERS ET AL.2484 Ecology, Vol. 89, No. 9



used paired t tests to compare diversity of all native

understory species (herbs, shrubs, and woody vines) at

the 1-m2 and 20-m2 scales, comparing the means across

all quads in the 1950 sample with those in the resample.

We then analyzed herbaceous and woody species

separately, again using paired t tests to analyze shifts

in richness. We used these data to compute rates of

change in species richness between the two sample

periods using the formula N2000 ¼ k(N1950), where N is

the number of species present at the site and ln(k) is the
rate of change (equivalent to a log response ratio

[Osenberg et al. 1997]). We added 0.1 to both the

numerator and denominator to avoid dividing by zero.

To characterize species dynamics, we estimated

extirpation and colonization rates from the samples,

noting the number of native species apparently lost or

gained at each site. Rates of extirpation and coloniza-

tion were then calculated as the number of native species

lost divided by the native species richness in 1950, and

the number of native species gained relative to native

richness in 2004, respectively.

To evaluate overall shifts in community composition

and assess which species were most sensitive to change,

we used several multivariate approaches. For each stand

and time period, we calculated the mean similarity in

species composition to the other 93 stands using the

Bray-Curtis measure of similarity (McCune and Grace

2002). We analyzed changes in average similarity using a

paired t test, considering stands to have undergone

biotic homogenization if average similarity increased

between 1950 and 2004. We estimated rates of homog-

enization within stands using the formula given above.

To identify which species contribute the most to the

differences in community richness and heterogeneity

between sample periods, we applied nonmetric multidi-

mensional scaling (NMDS) ordination to the combined

data sets (both 1950 and 2004 analyzed together). This

generates a set of orthogonal synthetic axes for plotting

sites in species space where proximity reflects floristic

similarity. To test for differences in species composition

and community structure between time periods, we used

ANOSIM (Clarke 1993), a nonparametric permutation

procedure that tests the hypothesis that no difference

exists between sample periods in terms of community

composition. We then examined the relative importance

of individual species in each time period by using the

SIMPER routine in Primer 5 (Clarke 1993). We use

these procedures to first test whether species composi-

tion has shifted in a consistent manner between sample

periods, and second, to describe the importance value of

individual species in the ‘‘average’’ stand in each time

period. As with changes in richness and heterogeneity,

we perform separate analyses on canopy composition,

the overall understory community, and the herbaceous

and woody components of the understory community.

To examine the influence of exotic species, we assessed

how changes in native species richness and community

heterogeneity responded to: (1) the number of invasive

exotic species present in the stand in 2004, (2) the total

frequency of all exotics at that site, and (3) the relative
frequency (dominance) of invasive exotics at the site.

To predict changes in the overstory and understory
communities, we examined how the computed rates of

change in species richness and community similarity
depend on initial canopy composition (SI), changes in

canopy composition, and change in stand basal area. We
used forward stepwise multiple regressions to identify
which combinations of these variables best explained

changes in species richness and average compositional
similarity. Finally, we applied a randomization (Mantel)

test with 5000 permutations to examine the correlation
between overstory and understory composition in each

time period.

RESULTS

Canopy changes

Overall tree density decreased ;16%, (from 380 to 318

trees/ha; paired t¼ 4.52, P , 0.0001, n¼ 94 for this and
all following analyses). Over the same period, mean
basal area of trees remained roughly steady, increasing

5%, (from 716 to 751 cm2, paired t ¼ 1.11, P ¼ 0.32).
These changes account for a 10% decrease in estimated

stand basal area per hectare (from 25.7 to 23.1 m2/ha,
paired t¼ 2.17, P ¼ 0.02).

Average canopy species richness increased 19%, (from
8.4 to 10.0 species per site, paired t¼�4.93, P , 0.001).

This increase in within-site species richness was accom-
panied by a 14% divergence in overstory Bray-Curtis

similarity among sites (from 36.9 to 31.8, paired t¼6.99,
P , 0.0001). Neither logging history nor logging

intensity significantly affected changes in species rich-
ness or heterogeneity.

The abundance and dominance of Quercus has
declined significantly since the original survey, while

mid- and late-successional taxa (based on SAV values)
including Acer saccharum, A. rubrum, Carya cordiformis,

Ulmus spp., and Prunus serotina have increased (Fig. 2).
Species in the red oak group (Quercus rubra and Q.

velutina) experienced greater declines in importance
(48.6% and 47.1%) than Quercus alba (31.1%). The

diameter distribution of Quercus spp. has also shifted
from an approximate reverse-J distribution characteris-
tic of expanding populations to a distribution charac-

teristic of senescent populations (Fig. 3A), increasing the
mean basal area per oak. In contrast, populations of

Acer spp. have maintained and expanded their vigorous
reverse-J diameter distributions (Fig. 3B). Changes in

the succession index (SI) (Peet and Loucks 1977)
support these trends. Average stand SI increased by

33% (from 4.52 to 6.07, paired t¼�11.57, P , 0.0001),
reflecting increased dominance by later successional

species.
The NMDS analysis also suggests that canopy

composition has shifted since 1950 (Fig. 4A). ANOSIM
analysis revealed significant differences in ordination

space between the two sample periods (global R¼ 0.093,
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a¼ 0.1% with no permutations out of 1000 . global R).

This supports the idea that the 1950 and 2004 samples

represent distinct ‘‘groups’’ (i.e., that community com-

position has shifted). Analyses of the relative importance

of species in each sample group (1950 vs. 2004) provided

a clear picture of species changes at the community level

(Appendix A). In the 1950 sample, only six species

account for .90 % of the total variation in the species3

site data matrix, whereas it took nine species to explain

this much variation in the 2004 sample. Moreover,

species dominance among the top four species reversed.

In the 1950 sample group, the average stand was

dominated by Quercus rubra and Quercus alba, with a

combined importance value of 59.2%. The importance

of these oaks declined .50% (to 26.3%) by 2004, while

the combined importance value of more mesic species

(Acer saccharum and Tilia americana) more than

doubled (from 18.9% to 37.6%).

Changes in the understory

Across the 94 sites, Curtis and colleagues detected 220

native taxa in 1950. Of these, 64 did not appear in the

resample. We detected an additional 33 native species

for a total of 189 native species in the 2004 sample.

Thus, we observed a 15% decrease in the number of

native species present in the regional species pool. In

contrast, the regional pool of exotic species more than

doubled from 13 species (5.5%) in 1950 to 31 species

FIG. 2. Changes in the relative abundance of major canopy species. Species are ranked in decreasing abundance based on the
original sample data (see Methods). Error bars representþ SE.

FIG. 3. Changes in the size class distributions of (A) oak and (B) maple tree stems between ca. 1950 and 2004 across all 94 sites.
Bars show the number of stems occurring within each size class (defined as the maximum basal area per tree).
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(13.3%) in 2004. Exotic species that occupied only 13

stands (14%) in 1950 occurred at 76 sites (81%) in 2004.

Their relative abundance within sites increased sevenfold

from an average of 1.2% in 1950 to 8.4% in 2004.

Collective native herb, shrub, and woody vine species

richness at the 20-m2 scale declined at 70 of the 94 sites

(75%). Mean species richness per site declined 23.1%

(from 37.8 species/20 m2 in 1950 to 29.1 species/20 m2 in

2004, paired t ¼ 8.25, P , 0.0001). On average, sites

appeared to lose 18.5 species (48.9%) while only gaining

back 9.8 species. At the 1-m2 scale, native species density

declined on average 25% (from 8.5 species/m2 to 6.4

species/m2, paired t ¼ 7.30, P , 0.0001). Most of this

decline in native understory richness reflected a 27%

decline in native herbaceous species at the 20-m2 scale

(28.5 vs. 21.3, paired t¼ 7.27, P , 0.0001). In contrast,

the number of native woody species declined by only

11.8% (9.3 vs. 8.2 species, paired t ¼ 3.39, P ¼ 0.001)

leading to a 14.7% increase in the relative abundance of

woody species (from 0.185 to 0.217, paired t¼�3.08, P¼
0.003) in the understory.

The NMDS ordinations reveal clear and consistent

shifts in overall community composition for the

combined, herbaceous (Fig. 4B), and woody understory

communities. Each returned a three-dimensional solu-

tion with similar final stress values (0.15, 0.15, and 0.17

for combined, herbaceous, and woody species, respec-

tively). ANOSIM analyses confirmed that 1950 and 2004

samples differ considerably in species composition

(Global R of 0.243, 0.262, and 0.135, respectively, all

P values , 0.001). In other words, the forest understo-

ries have shown consistent shifts in species composition

between the 1950 and 2004 sample periods, and the

contemporary vegetation is floristically distinct from the

communities that occurred at these same sites in the

past.

The sites are converging in native understory com-

munity composition, reflecting biotic homogenization.

The mean pairwise similarity in understory community

composition among stands increased 7.5% since 1950

(from 30.9 to 33.1, paired t ¼ �4.10, P , 0.001). In

contrast to declines in understory species richness, these

declines in beta diversity mostly reflect convergence in

shrub composition. Shrub similarity increased 18%

among sites (from 0.282 to 0.332, paired t ¼�6.25, P
, 0.0001). Sites that gained shrub species grew more

similar in shrub composition over time (r ¼ 0.527, P ,

0.001). Rates of apparent shrub extirpation or coloni-

zation were unrelated to shrub homogenization. In

contrast, herb similarity increased only 3.5% (from 0.314

to 0.325, paired t ¼�2.04, P ¼ 0.045). Homogenization

in the herb layer was uncorrelated with changes in native

herb richness (r ¼�0.112, P ¼ 0.283), rates of apparent

extirpation (r¼�0.176, P¼ 0.089), or rates of apparent

colonization (r ¼ �0.182, P ¼ 0.080). Despite these

differences, rates of herb and shrub homogenization

were correlated (r ¼ 0.316, P ¼ 0.002), suggesting that

similar stand-level processes may drive these trends.

SIMPER analyses further support the idea that under-

stories in these stands became more homogenous. In the

original sample 38, 27, and 11 species were needed to

account for 90% of the variance in the similarity

matrices of the native understory, native herb, and

native woody communities, respectively. In 2004,

however, only 25, 17, and 7 species explained this same

level of variation.

Among the herbs, Circaea lutetiana, Geum canadense,

and Arisaema triphyllum increased the most in impor-

tance, while Carex spp., Aralia nudicaulis, Galium

FIG. 4. Combined NMS (nonmetric multi-dimensional scaling) ordinations of 1950 and 2004 samples for (A) canopy species
and (B) native understory herbs. See Methods: Analyses.
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concinnum, Desmodium glutinosum, and Amphicarpaea

bracteata all showed strong declines in frequency and

importance (Appendix B). Most of the important species

in the original sample also declined. The woody

community has also changed dramatically. Taxa such

as Celastrus scandens, Cornus racemosa, and Corylus

americana declined greatly, while Parthenocissus spp.,

Ribes missouriense, and Prunus virginiana increased

markedly in abundance. The trailing vine Parthenocissus

spp. showed particularly conspicuous increases in

relative importance, from 30% in the original survey to

49% in 2004 (Appendix C).

Influence of exotic species invasions

These declines in richness and increases in homoge-

nization in the combined understory community do not

appear to be the consequence of exotic species invasions.

Across these 94 forests, local declines in understory

native species richness were uncorrelated with either the

presence or local abundance of exotic taxa (analyses not

shown). Including the exotic species in our calculations

of average between-stand similarity reduced the increase

in mean community similarity from 7.5% to 2.6%,

suggesting that exotic invasion has increased heteroge-

neity between stands. However, stands with greater

exotic species abundance in 2004 also tended to

experience more native herb homogenization than less

invaded stands (r¼ 0.286, P¼ 0.005), suggesting that the

factors that make stands vulnerable to exotic species

invasions also contribute to gains of native habitat

generalists and losses of habitat specialists.

How do initial conditions affect shifts in composition?

Early-successional stands (i.e., those with many oaks

and low SI values in 1950) experienced the greatest

changes over the next 50 years. These stands showed less

similarity to their original composition, as evidenced by

a positive correlation between stand SI in 1950 and the

Bray-Curtis similarity of a stand to itself between

samples (r ¼ 0.47, P , 0.001). They also experienced

more successional change, as shown by the negative

correlation between stand SI in 1950 and the change in

SI (r ¼ �0.53, P , 0.0001). In addition, these stands

gained more tree species (stand SI in 1950 vs. change in

tree richness, r ¼ �0.57, P , 0.001) and tended to

diverge more in composition (correlation between SI

1950 and change in average similarity to other stands: r

¼ 0.49, P , 0.001). Soil texture and nutrients were

strongly correlated with these initial SI values and thus

showed similar patterns. Coarse, nutrient-poor soils

tended to gain canopy species and undergo biotic

differentiation, while stands on nutrient-rich soils tended

to lose canopy species and undergo homogenization.

Acer negundo, Acer rubrum, Prunus serotina, and Carya

ovata tended to expand most on nutrient-poor soils and

early-successional stands, whereas Acer saccharum

expanded the most on fine-textured, nutrient-rich soils

with high SI values.

A site’s initial canopy composition and successional

state also affected subsequent changes in understory

richness (Table 1). Later successional stands showed

greater declines in overall native understory richness

than did early-successional stands at both the 1-m2 and

20-m2 scales (r ¼�0.38, P , 0.001 and r ¼�0.28, P ,

0.05, respectively). Stands in 1950 with the most red oak

(Q. rubra and Q. velutina) were least likely to lose native

understory species, as evidenced by positive correlations

between red oak relative frequency in 1950 and rates of

change in overall understory species richness at the 1-m2

and 20-m2 scales (r ¼ 0.46 and 0.33, both P , 0.001).

TABLE 1. Spearman rank correlations showing changes in native species richness: relationships between soil factors, initial forest
composition, and changes in forest structure and understory dynamics.

Variables Quadrat Site Herbs Shrubs
Apparent

colonization
Apparent
extirpation

Soil variables

Sand (%) 0.245* 0.248* 0.25* 0.096 0.189 �0.07
N (%) �0.206* �0.162 �0.113 �0.136 �0.148 0.075

Initial forest composition

SI 1950 �0.380*** �0.280** �0.177 �0.114 �0.476*** 0.102
Red oaks 1950 0.456*** 0.326*** 0.295* 0.094 0.521*** �0.136
Richness 1950 �0.387*** �0.224* �0.188 �0.261* 0.178 �0.014

Change in forest structure

Change in Avg. BA �0.179 �0.13 �0.072 �0.244 �0.265* 0.059
Change in BA/ha �0.242* �0.267** �0.213* �0.295* �0.341*** 0.188

Notes: Only predictors with at least one significant relationship to the response variables are shown. Initial forest composition is
represented by stand successional index (SI) in 1950, red oak relative frequency in 1950, and understory species richness in 1950.
Changes in overstory composition are represented by changes in average basal area (BA) per tree and BA per hectare. Understory
dynamics are represented by changes in native understory species richness at the quadrat (1-m2) and site (20-m2) scales. ‘‘Herb’’ and
‘‘Shrub’’ refer to the herbaceous and shrub components of overall site (20 m2) species richness. Apparent colonization and
extirpation refer to the numbers of native species observed to appear or disappear at a site based on the 20-m2 samples. Values
shown are Spearman rank correlations of the various predictor variables to changes in these dependent variables. Numbers in
boldface type represent significant relationships.

* P , 0.05; ** P , 0.01; *** P , 0.001.
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This trend may reflect the fact that sites with a high

relative frequency of red oaks also experienced higher

apparent rates of native species colonization (r¼ 0.52, P

, 0.001) with no greater rate of apparent extirpation (r

¼�0.136, P¼ 0.192). Similarly, stands that increased the

most in basal area per hectare experienced greater

species losses (Table 1), a trend that may be linked to

their lower rates of apparent colonization (r¼�0.26, P¼
0.01) and, to a lesser extent, increased extirpation (r ¼
0.19, P ¼ 0.069).

Understory herbs typical of early-successional oak-

dominated sites declined more in abundance than those

species that typically occur in late-successional or more

mesic sites. Although early-successional stands tended to

lose fewer species overall, the understory species most

tied to these forests (with low SAV values in the original

sample) declined more than species with high SAV

values, both in terms of the number of sites they

occupied and their total frequency (r¼�0.33 and�0.26,
respectively, P , 0.01). This trend was confined to

herbaceous species, as shrub species showed no rela-

tionship between their 1950 habitat preference and

observed declines.

These forest understories have also lost beta diversity,

as shown by increases in the mean similarity among

sites. This homogenization appears unlinked to a stand’s

initial successional state, as evidenced by the lack of any

significant correlation between 1950 SI and overall

understory mean similarity (r ¼ 0.199, P . 0.05).

Changes in beta diversity in both the herbaceous and

woody communities were also unrelated to initial

successional index. However, stands on fine-textured,

nutrient-rich sites converged more in species composi-

tion than those on coarse-textured, nutrient-poor soils

(Appendix D). As with declines in alpha diversity,

declines in beta diversity (homogenization) in the herb

layer were correlated with soil conditions (e.g., percent-

age of clay, r ¼ 0.34, P , 0.001 and silt, r ¼ 0.23, P ,

0.05). Homogenization in the shrub layer, however, was

unrelated to soil variables.

Potential drivers of change

Canopy species richness in 2004 depended on initial

tree richness and initial successional status (SI score in

1950, both P , 0.001) as well as soil texture (PCA axis 2,

P ¼ 0.018) with adjusted stepwise regression R2 values

increasing from 52.1%, to 59.1%, to 61.2%. Changes in

average canopy similarity, however, depended only on

initial SI and initial average similarity (both P , 0.001),

which explained 23.9% and 17.4% of the variance,

respectively.

Overall changes in understory richness at 1 m2

reflected the original richness present in 1950, initial SI

(both P , 0.001), and changes in basal area per hectare

(P ¼ 0.023), which contributed 15%, 14.8%, and 4%,

respectively, to the variance explained. The amount of

understory homogenization reflected initial average

similarity (P , 0.001) and soil fertility (PCA 1: P ¼

0.016), but not initial canopy composition (P ¼ 0.416).

The absence of any strong correlation between initial

canopy conditions (1950 SI) and the homogenization

observed in the combined, herbaceous, and woody

communities may reflect declines in how strongly

canopy conditions are affecting the understory general-

ly. Indeed, the correlation between canopy and total

understory similarity matrices declined from a robust

0.483 in 1950 to 0.240 by 2004 (both P , 0.0001 in

Mantel randomization tests).

DISCUSSION

Although previous work has already made clear that

oaks have declined in importance in forests across

eastern North America (Abrams 2003, Lorimer 2003),

we have extended these findings by examining in detail

both canopy and understory changes over half a century

at a widely dispersed set of sites. Gradual trends of the

kind that take decades to manifest are often difficult to

discern in ecological data, but the Curtis (1959) baseline

data allowed us to lift the veil on this ‘‘invisible present’’

(Magnuson 1990). Canopy and understory richness,

composition, and heterogeneity have all shifted signifi-

cantly, probably in response to both light conditions and

the elimination of fires. These trends are not particular to

one or a few sites, nor do they reflect dramatic changes at

already degraded sites. Rather, they reflect consistent

and systematic changes occurring across a widely

distributed set of 94 of the best natural habitats that

existed at the time of the baseline survey. Thus, these

data provide uniquely detailed and statistically robust

insights into how these forest understories have changed

and are likely to continue to change in the future.

Declines in the dominance of oaks in the overstory

accompanied by increases in the dominance of maples,

ash, and elm are conspicuous, creating a pattern of

‘‘mesification’’ already noted by others (Shotola et al.

1992, Fralish 2004, Ozier et al. 2006, Spyreas and

Matthews 2006, Nowacki and Abrams 2008). Early-

successional stands were more likely to recruit new

canopy species, likely reflecting increases in fire-intoler-

ant species. The faster declines in the red oaks (Quercus

rubra or Q. velutina) relative to white oak may reflect

either their greater dependence on fires for establish-

ment, or their greater susceptibility to disease (Menges

and Loucks 1984). Stands that began with more red oak

in the canopy also experienced greater turnover in their

understories, usually by being able to recruit new species

to replace those lost to canopy succession or other

factors.

Understory plant richness and heterogeneity have

declined dramatically in these forests, with rates of

species loss almost twice those observed in northern

Wisconsin (Rooney et al. 2004b). Shadier conditions and

increased shrub dominance are likely to further curtail

future oak regeneration (Lorimer et al. 1994, Lorimer

2003) and reduce herb density and diversity (Fralish

2004). Continued succession in coming years will likely
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cause these stands to converge further in species

composition (Ozier et al. 2006). Local site conditions

will modify these trends, with oaks and associated

understory species persisting best on sandy, nutrient-

poor sites (Peet and Loucks 1977).

Declines in species richness may also reflect the fact

that many of the forests we surveyed were originally oak

savannas (Cottam 1949). High-quality Wisconsin oak

savannas typically contain 16 species/m2 and 89

species/20 m2 (Leach and Givnish 1999), much greater

than the 8.5 species/m2 and 38 species/20 m2 recorded by

the PEL for oak forests in 1950, and the 6.4 species/m2

and 30 species 20/m2 we tallied in these same oak forests

today. In our data set, the few remaining species

characteristic of oak savannas (Bray 1958, Curtis 1959,

Pruka 1995) present in the 1950 data set largely

disappeared, including Amorpha canescens, Aster shortii,

and Tradescantia ohiensis. However, severe declines in

many typical oak forest understory species (Curtis 1959)

such as Carex spp., Aralia nudicaulis, Galium concin-

nium, Desmodium glutinosa, and Sanicula marilandica

suggest more species will likely meet the same fate in

coming decades. The especially large declines in narrow-

leaved (Carex spp. and Galium spp.) or thick-leaved taxa

(Desmodium glutinosa) further support the idea that

understory conditions have become much shadier today

than in 1950s-era forests. To date, these declines in

classic oak understory species have not been compen-

sated by colonization of typical mesic understory herbs,

such as Sanguinaria canadensis, Trillium grandiflorum, or

Caullophyllum thalictroides (Curtis 1959). Instead, these

understory species have been replaced by a small set of

habitat generalists that have invaded or expanded

locally. Circaea lutetiana and Geum canadense typify

the former, and share the trait of producing many small,

easily dispersed seeds. This suggests that these species

are well adapted to anthropogenic disturbance and

landscape fragmentation. Arisaema triphyllum has also

increased greatly, mirroring the trend observed in

northern Wisconsin (Wiegmann and Waller 2006).

These increases suggest that deer herbivory may be

driving some changes in the understory, as Arisaema is

generally avoided by deer.

The frequency and richness of many shrubs and

woody vines also declined, but these changes were less

pronounced than those observed in forest herbs.

Nevertheless, their shifts in composition and heteroge-

neity were stronger, a pattern resembling what Davison

and Forman (1982) observed in New Jersey. Species

recognized by Curtis (1959) as characteristic of xeric or

early-successional sites like Corylus americana and

Cornus racemosa showed profound declines. These have

generally been replaced by expanding populations of

dry-mesic or midsuccessional (Curtis 1959) species like

Prunus virginiana, Parthenocissus spp., and Ribes cyn-

osbati. The shade cast by these woody species on the

herbaceous layer has likely contributed to the declines

we observed in herbaceous richness, as shrubs and

woody vines are often well positioned to exploit light

gaps created when canopy trees die (Davison and

Forman 1982, McCune and Cottam 1985). Our work

further suggests that hyperabundant native species such

as Parthenocissus spp. and Prunus virginiana now

threaten native understory diversity as much as exotic

shrubs like Lonicera 3 bella and Rhamnus cathartica.

Reducing these species in the understory would likely

improve oak regeneration, understory diversity, and

floristic quality (Lorimer et al. 1994).

We were surprised to find that sites with more invasive

species did not generally experience higher losses of

native species richness. The presence of exotic species at

an increasing fraction of our sites and quadrats may thus

reflect more of a passive symptom than a direct cause of

the substantial declines in understory richness we

observed. Alternatively, the absence of demonstrated

impacts could reflect a time lag between when invasives

become established and when their impacts become

manifest.

Similar lag effects could also explain the lack of

influence of exotics on community homogenization.

Although exotic species invasions increase homogeniza-

tion at the scale of biogeographic provinces (McKinney

and Lockwood 1999), this may not hold true at the scale

of local communities or in the short term (Stohlgren et

al. 2002). A new invading species will initially serve to

increase differentiation among stands until it has

invaded about half the stands, beyond which invasions

act to increase community similarity (Rooney et al.

2007). Most of the exotic species we detected still occupy

fewer than half of these sites, meaning they are not yet

acting to increase homogenization. Only garlic mustard

(Alliaria petiolata) and common dandelion (Taraxacum

officinale) are currently widespread enough to increase

biotic homogenization in these stands.

Although initial canopy composition and succession

have clearly influenced understory richness and hetero-

geneity, these influences were relatively weak predictors

of change. This observation and the strong decline in the

correlation between canopy and understory community

composition over time (from 0.48 to 0.24) suggest that

current understory plant communities are responding to

forces beyond succession and edaphic gradients. Evi-

dence for an alternative mechanism can be seen by

comparing changes in the hilly unglaciated (‘‘driftless’’)

region of southwest Wisconsin to the flatter and more

fragmented forests of southeast Wisconsin. Forests in

the driftless area had much lower rates of native species

loss (�0.18 vs. �0.43 species/yr at 1 m2, P ¼ 0.006, and

�0.12 vs.�0.41 species/yr at 20 m2, P , 0.001), rates of

gain in exotic species (0.86 vs. 1.45, P¼ 0.001), and rates

of homogenization (1.89 vs. 2.12, P¼ 0.002) than forests

in southeast Wisconsin. Roads, development, and

fragmentation are all far more prevalent in the southeast

glaciated region (Radeloff 2005), likely contributing to

weedy plant invasion while limiting the dispersal of

many native woodland species (Matlack 2005).
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As these changes continue, we can expect oak forests to

decline further in understory diversity as they become

more dominated by a shrinking set of shade-tolerant

generalists. This trend will inevitably have cascading

effects on habitat quantity and quality for a wide variety

of plants and animals. To restore upland forest diversity

and stimulate oak regeneration in situ would almost

certainly require active management, including the use of

fire and possibly limits on deer. Fire has been shown to

increase the cover and richness of understory species in

some oak-dominated forests (Hutchinson 2005). Without

such active efforts, it will be difficult to retain, and likely

impossible to restore, viable and ecologically functional

examples of this disappearing forest type and its associated

woodland flora. Fire is not always a viable management

option, however, and even restoring fires to these systems

may not suffice to reverse these species losses if reduced

seed sources and altered litter and soil conditions now

limit seedling establishment for light-demanding oak

seedlings and understory herbs (Abrams and Scott 1989,

Abrams 2005). In such cases, an alternative strategy might

be to favor the colonization of some of these forests by

native understory plants adapted to mesic late-succession-

al conditions.
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APPENDIX A

A table showing importance values of canopy species for the ‘‘average’’ stand and the total frequency in each time period
(Ecological Archives E089-139-A1).

APPENDIX B

A table showing changes in the importance values and total frequency of individual species in each time period for herbaceous
species (Ecological Archives E089-139-A2).

APPENDIX C

A table showing changes in contribution within group similarity for the top native woody taxa in either time period (Ecological
Archives E089-139-A3).

APPENDIX D

A table showing influence of initial successional state and soil variables on rates of community homogenization for the
understory as a whole, for the herbaceous community, and for the woody community (Ecological Archives E089-139-A4).
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