746 research outputs found
Estimation of the shear viscosity at finite net-baryon density from A+A collision data at GeV
Hybrid approaches based on relativistic hydrodynamics and transport theory
have been successfully applied for many years for the dynamical description of
heavy ion collisions at ultrarelativistic energies. In this work a new viscous
hybrid model employing the hadron transport approach UrQMD for the early and
late non-equilibrium stages of the reaction, and 3+1 dimensional viscous
hydrodynamics for the hot and dense quark-gluon plasma stage is introduced.
This approach includes the equation of motion for finite baryon number, and
employs an equation of state with finite net-baryon density to allow for
calculations in a large range of beam energies. The parameter space of the
model is explored, and constrained by comparison with the experimental data for
bulk observables from SPS and the phase I beam energy scan at RHIC. The favored
parameter values depend on energy, but allow to extract the effective value of
the shear viscosity coefficient over entropy density ratio in the
fluid phase for the whole energy region under investigation. The estimated
value of increases with decreasing collision energy, which may
indicate that of the quark-gluon plasma depends on baryochemical
potential .Comment: minor changes in the text, results for constant eta*T/w added.
Version accepted for publication in Phys. Rev.
Femtoscopy correlations of kaons in collisions at LHC within hydrokinetic model
We provide, within the hydrokinetic model, a detailed investigation of kaon
interferometry in collisions at LHC energy (
TeV). Predictions are presented for 1D interferometry radii of and
pairs as well as for 3D femtoscopy scales in out, side and
long directions. The results are compared with existing pion interferometry
radii. We also make predictions for full LHC energy.Comment: 12 pages, 6 figure
ΠΠ²ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΡ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠΉ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ. ΠΠΏΡΡ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΠΈ
There are a large number of examples of using the population-based algorithms (P-algorithms) to have a successful solution for complex practical tasks of global optimization, for instance, problems of computer-aided design, synthesis of complex chemical compounds, optimal control of dynamic systems, etc. P-algorithms are also successfully used in multi-criteria optimization, when a preliminary construction of some Pareto set (front) approximation is required. P-algorithms are numerous and very diverse β over 100 such algorithms are known, and new algorithms continue to appear. In this connection, the problem of systematizing expressive means of P-algorithms is of relevance. We consider one of the components of this problem that is the problem of classification of the search operators of P-algorithms.The paper formulates a global optimization problem and a general scheme of the P-algorithms to solve it. This multilevel classification of the main search operators of P-algorithms at the highest level of the hierarchy identifies the following operators: initialization of the population and the end of the search; coding of individuals; randomization; selection; crossing; population management; local search.These operators at the next hierarchical level are divided into deterministic and stochastic ones. Further, we distinguish static, dynamic program and dynamic adaptive operators. The following classification levels are "operator dependent", that is, generally speaking, different for each operator. We reveal the essence of these operators and give the use cases in various P-algorithms.Although the paper uses the names of operators such as selection, crossing, our orientation is not only to evolutionary algorithms. A description scheme of operators presented in this paper can be used to determine any population-based algorithms.The work development expects extending a set of operators presented, and, above all, using this set and a set of basic essences of population algorithms, the formalization of which was earlier proposed by the author, systematizing the most known algorithms of this class.ΠΠ·Π²Π΅ΡΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΡΡΠΏΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² (Π-Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ²) ΡΠ»ΠΎΠΆΠ½ΡΡ
ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π΄Π°Ρ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠΉ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π·Π°Π΄Π°Ρ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ»ΠΎΠΆΠ½ΡΡ
Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ, ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ ΠΈ Ρ.Π΄. Π-Π°Π»Π³ΠΎΡΠΈΡΠΌΡ ΡΠ°ΠΊΠΆΠ΅ ΡΡΠΏΠ΅ΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π² ΠΌΠ½ΠΎΠ³ΠΎΠΊΡΠΈΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠ°ΡΠΈΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° (ΡΡΠΎΠ½ΡΠ°) ΠΠ°ΡΠ΅ΡΠΎ ΡΡΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ. Π-Π°Π»Π³ΠΎΡΠΈΡΠΌΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½Ρ ΠΈ Π²Π΅ΡΡΠΌΠ° ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½Ρ β ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ 100 ΡΠ°ΠΊΠΈΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ², ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡ ΠΏΠΎΡΠ²Π»ΡΡΡΡΡ Π½ΠΎΠ²ΡΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ. ΠΒ ΡΡΠΎΠΉ ΡΠ²ΡΠ·ΠΈ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΠΈ Π²ΡΡΠ°Π·ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ² Π-Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ². Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ ΠΎΠ΄Π½Ρ ΠΈΠ· ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΡΡΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ β ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠΈΡΠΊΠΎΠ²ΡΡ
ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ² Π-Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ².ΠΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΡ Π·Π°Π΄Π°ΡΠΈ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠΉ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΠΎΠ±ΡΡΡ ΡΡ
Π΅ΠΌΡ Π-Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² Π΅Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡΡΠΎΠ²Π½Π΅Π²ΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΏΠΎΠΈΡΠΊΠΎΠ²ΡΡ
ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ² Π-Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ². ΠΡΠ° ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π½Π° Π²Π΅ΡΡ
Π½Π΅ΠΌ ΡΡΠΎΠ²Π½Π΅ ΠΈΠ΅ΡΠ°ΡΡ
ΠΈΠΈ Π²ΡΠ΄Π΅Π»ΡΠ΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΡ: ΠΈΠ½ΠΈΡΠΈΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ ΠΈ ΠΎΠΊΠΎΠ½ΡΠ°Π½ΠΈΠ΅ ΠΏΠΎΠΈΡΠΊΠ°; ΠΊΠΎΠ΄ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡΠΎΠ±Π΅ΠΉ; ΡΠ°Π½Π΄ΠΎΠΌΠΈΠ·Π°ΡΠΈΡ; ΡΠ΅Π»Π΅ΠΊΡΠΈΡ; ΡΠΊΡΠ΅ΡΠΈΠ²Π°Π½ΠΈΠ΅; ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠ΅ΠΉ; Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΏΠΎΠΈΡΠΊ. Π£ΠΊΠ°Π·Π°Π½Π½ΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΡ Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ ΠΈΠ΅ΡΠ°ΡΡ
ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΡΠΎΠ²Π½Π΅ ΠΏΠΎΠ΄ΡΠ°Π·Π΄Π΅Π»ΡΡΡΡΡ Π½Π° Π΄Π΅ΡΠ΅ΡΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΈ ΡΡΠΎΡ
Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅. ΠΠ°Π»Π΅Π΅ ΡΠ°Π·Π»ΠΈΡΠ°Π΅ΠΌ ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅, Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΠ΅ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π°Π΄Π°ΠΏΡΠΈΠ²Π½ΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΡ. Π‘Π»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΡΠΎΠ²Π½ΠΈ ΡΠ²Π»ΡΡΡΡΡ Β«ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΡΠΌΠΈΒ», ΡΠΎ Π΅ΡΡΡ, Π²ΠΎΠΎΠ±ΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, ΡΠ°Π·Π»ΠΈΡΠ½Ρ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ². Π Π°ΡΠΊΡΡΠ²Π°Π΅ΠΌ ΡΡΡΡ ΡΡΠΈΡ
ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ², ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠΌ Π²Π°ΡΠΈΠ°Π½ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π-Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°Ρ
.Π₯ΠΎΡΡ Π² ΡΠ°Π±ΠΎΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠ°ΠΊΠΈΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ², ΠΊΠ°ΠΊ ΡΠ΅Π»Π΅ΠΊΡΠΈΡ, ΡΠΊΡΠ΅ΡΠΈΠ²Π°Π½ΠΈΠ΅, ΠΌΡ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½Π° ΡΠ²ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½Π°Ρ Π² ΡΠ°Π±ΠΎΡΠ΅ ΡΡ
Π΅ΠΌΠ° ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π»ΡΠ±ΡΡ
ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ².Π ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ ΠΏΠ»Π°Π½ΠΈΡΡΠ΅ΡΡΡ ΡΠ°ΡΡΠΈΡΠΈΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Π½Π°Π±ΠΎΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ² ΠΈ, Π³Π»Π°Π²Π½ΠΎΠ΅, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° ΠΈ Π½Π°Π±ΠΎΡΠ° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ², ΡΠΎΡΠΌΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΊΠΎΡΠΎΡΡΡ
ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π°Π²ΡΠΎΡΠΎΠΌ ΡΠ°Π½Π΅Π΅, ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ ΡΡΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ°
Equivariant pretheories and invariants of torsors
In the present paper we introduce and study the notion of an equivariant
pretheory: basic examples include equivariant Chow groups, equivariant K-theory
and equivariant algebraic cobordism. To extend this set of examples we define
an equivariant (co)homology theory with coefficients in a Rost cycle module and
provide a version of Merkurjev's (equivariant K-theory) spectral sequence for
such a theory. As an application we generalize the theorem of
Karpenko-Merkurjev on G-torsors and rational cycles; to every G-torsor E and a
G-equivariant pretheory we associate a graded ring which serves as an invariant
of E. In the case of Chow groups this ring encodes the information concerning
the motivic J-invariant of E and in the case of Grothendieck's K_0 -- indexes
of the respective Tits algebras.Comment: 23 pages; this is an essentially extended version of the previous
preprint: the construction of an equivariant cycle (co)homology and the
spectral sequence (generalizing the long exact localization sequence) are
adde
Hydrokinetic predictions for femtoscopy scales in A+A collisions in the light of recent ALICE LHC results
A study of energy behavior of the pion spectra and interferometry scales is
carried out for the top SPS, RHIC and for LHC energies within the hydrokinetic
approach. The main mechanisms that lead to the paradoxical, at first sight,
dependence of the interferometry scales with an energy growth, in particular, a
decrease ratio, are exposed. The hydrokinetic predictions
for the HBT radii at LHC energies are compared with the recent results of the
ALICE experiment.Comment: Based on the talks given at the Sixth Workshop on Particle
Correlations and Femtoscopy, BITP, Kiev, September 14 - 18, 2010 and GSI/EMMI
Seminar, January 14, 201
Russian specialized periodicals in culture as a modern communicative channel
The key factor of modern society development is mass media, and nowadays its demanded business model is the translation of advertising informatio
- β¦