10,702 research outputs found

    Searching for magnetic monopoles trapped in accelerator material at the Large Hadron Collider

    Full text link
    If produced in high energy particle collisions at the LHC, magnetic monopoles could stop in material surrounding the interaction points. Obsolete parts of the beam pipe near the CMS interaction region, which were exposed to the products of pp and heavy ion collisions, were analysed using a SQUID-based magnetometer. The purpose of this work is to quantify the performance of the magnetometer in the context of a monopole search using a small set of samples of accelerator material ahead of the 2013 shutdown.Comment: 11 page

    Small is Unsustainable?:Alternative Food Movement in the Low Countries, 1969-1990

    Get PDF
    This article analyses how the alternative food movement in the Low Countries successfully promoted the ideal of small-scale production and consumption since the 1970s. This history highlights an interpretation of sustainability which addressed global problems by a return to the local. Operating on a small scale enabled the alternative food movement to bridge the gap between social and environmental concerns. Although alternative food remained marginal within the quickly expanding agricultural sector of both Belgium and the Netherlands, the movement enlarged its reach through eco-labels and cooperation with large retail chains. As a result, small-scale practices could not be maintained. In the Netherlands, the alternative food movement subsequently emphasised the environment, whereas the social dimension was more pronounced in Belgium. Small-scale production and consumption became firmly entrenched as ideals, but, in practice, the balance between social, environmental, and economic concerns that activists had hoped for, moved out of reach

    Single-electron tunneling in InP nanowires

    Get PDF
    We report on the fabrication and electrical characterization of field-effect devices based on wire-shaped InP crystals grown from Au catalyst particles by a vapor-liquid-solid process. Our InP wires are n-type doped with diameters in the 40-55 nm range and lengths of several microns. After being deposited on an oxidized Si substrate, wires are contacted individually via e-beam fabricated Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor temperature dependence. The distance between the electrodes varies between 0.2 and 2 micron. The electron density in the wires is changed with a back gate. Low-temperature transport measurements show Coulomb-blockade behavior with single-electron charging energies of ~1 meV. We also demonstrate energy quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure

    Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    Full text link
    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiolkowski states, entanglement witnesses and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.Comment: 8 pages, 1 figur

    Scaling of running time of quantum adiabatic algorithm for propositional satisfiability

    Full text link
    We numerically study quantum adiabatic algorithm for the propositional satisfiability. A new class of previously unknown hard instances is identified among random problems. We numerically find that the running time for such instances grows exponentially with their size. Worst case complexity of quantum adiabatic algorithm therefore seems to be exponential.Comment: 7 page

    Magnetic permeability of near-critical 3d abelian Higgs model and duality

    Get PDF
    The three-dimensional abelian Higgs model has been argued to be dual to a scalar field theory with a global U(1) symmetry. We show that this duality, together with the scaling and universality hypotheses, implies a scaling law for the magnetic permeablity chi_m near the line of second order phase transition: chi_m ~ t^nu, where t is the deviation from the critical line and nu ~ 0.67 is a critical exponent of the O(2) universality class. We also show that exactly on the critical lines, the dependence of magnetic induction on external magnetic field is quadratic, with a proportionality coefficient depending only on the gauge coupling. These predictions provide a way for testing the duality conjecture on the lattice in the Coulomb phase and at the phase transion.Comment: 11 pages; updated references and small changes, published versio

    Quantum algorithm for the Boolean hidden shift problem

    Get PDF
    The hidden shift problem is a natural place to look for new separations between classical and quantum models of computation. One advantage of this problem is its flexibility, since it can be defined for a whole range of functions and a whole range of underlying groups. In a way, this distinguishes it from the hidden subgroup problem where more stringent requirements about the existence of a periodic subgroup have to be made. And yet, the hidden shift problem proves to be rich enough to capture interesting features of problems of algebraic, geometric, and combinatorial flavor. We present a quantum algorithm to identify the hidden shift for any Boolean function. Using Fourier analysis for Boolean functions we relate the time and query complexity of the algorithm to an intrinsic property of the function, namely its minimum influence. We show that for randomly chosen functions the time complexity of the algorithm is polynomial. Based on this we show an average case exponential separation between classical and quantum time complexity. A perhaps interesting aspect of this work is that, while the extremal case of the Boolean hidden shift problem over so-called bent functions can be reduced to a hidden subgroup problem over an abelian group, the more general case studied here does not seem to allow such a reduction.Comment: 10 pages, 1 figur
    corecore