224 research outputs found

    Strategy for Dynamic Wisp Removal in James Webb Space Telescope NIRCam Images

    Full text link
    The James Webb Space Telescope (JWST) near-infrared camera (NIRCam) has been found to exhibit serious wisp-like structures in four of its eight short-wavelength detectors. The exact structure and strength of these wisps is highly variable with the position and orientation of JWST, so the use of static templates is non-optimal. Here we investigate a dynamic strategy to mitigate these wisps using long-wavelength reference images. Based on a suite of experiments where we embed a worst-case scenario median-stacked wisp into wisp-free images, we define suitable parameters for our wisp removal strategy. Using this setup we re-process wisp-affected public Prime Extragalactic Areas for Reionization and Lensing Science (PEARLS) data in the North Ecliptic Pole Time Domain Field (NEP-TDF) field, resulting in significant visual improvement in our detector frames and reduced noise in the final stacked images.Comment: 16 pages, 10 figures, submitted to PASP, comments welcom

    Turbulent Erosion of Magnetic Flux Tubes

    Get PDF
    Results from a numerical and analytical investigation of the solution of a nonlinear axially symmetric diffusion equation for the magnetic field are presented for the case when the nonlinear dependence of the diffusivity nu(B) on the magnetic field satisfies basic physical requirements. We find that for sufficiently strong nonlinearity (i.e. for sufficiently strong reduction of nu inside the tube) a current sheet is spontaneously formed around the tube within one diffusion timescale. This sheet propagates inwards with a velocity inversely proportional to the ratio of the field strength just inside the current sheet to the equipartition field strength B0/Be, so the lifetime of a tube with constant internal flux density is increased approximately by a factor not exceeding B0/Be, even for infinitely effective inhibition of turbulence inside the tube. Among the applications of these results we point out that toroidal flux tubes in the solar convective zone are subject to significant flux loss owing to turbulent erosion on a timescale of about 1 month, and that turbulent erosion may be responsible for the formation of a current sheet around a sunspot. It is further proposed that, despite the simplifying assumptions involved, our solutions correctly reflect the essential features of the sunspot decay process.Comment: 17 pages, 11 figure

    GAMA/DEVILS: Cosmic star formation and AGN activity over 12.5 billion years

    Get PDF
    We use the Galaxy and Mass Assembly (GAMA) and the Deep Extragalactic Visible Legacy Survey (DEVILS) observational data sets to calculate the cosmic star formation rate (SFR) and active galactic nuclei (AGN) bolometric luminosity history (CSFH/CAGNH) over the last 12.5 billion years. SFRs and AGN bolometric luminosities were derived using the spectral energy distribution fitting code ProSpect, which includes an AGN prescription to self consistently model the contribution from both AGN and stellar emission to the observed rest-frame ultra-violet to far-infrared photometry. We find that both the CSFH and CAGNH evolve similarly, rising in the early Universe up to a peak at look-back time 10\approx 10~Gyr (z2z \approx 2), before declining toward the present day. The key result of this work is that we find the ratio of CAGNH to CSFH has been flat (1042.5ergs1M1yr\approx 10^{42.5}\mathrm{erg \, s^{-1}M_{\odot}^{-1}yr}) for 1111~Gyr up to the present day, indicating that star formation and AGN activity have been coeval over this time period. We find that the stellar masses of the galaxies that contribute most to the CSFH and CAGNH are similar, implying a common cause, which is likely gas inflow. The depletion of the gas supply suppresses cosmic star formation and AGN activity equivalently to ensure that they have experienced similar declines over the last 10 Gyr. These results are an important milestone for reconciling the role of star formation and AGN activity in the life cycle of galaxies.Comment: 16 pages, 10 figures. Figures 9 and 10 are the main results. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The case for a distributed solar dynamo shaped by near-surface shear

    Full text link
    Arguments for and against the widely accepted picture of a solar dynamo being seated in the tachocline are reviewed and alternative ideas concerning dynamos operating in the bulk of the convection zone, or perhaps even in the near-surface shear layer, are discussed. Based on the angular velocities of magnetic tracers it is argued that the observations are compatible with a distributed dynamo that may be strongly shaped by the near-surface shear layer. Direct simulations of dynamo action in a slab with turbulence and shear are presented to discuss filling factor and tilt angles of bipolar regions in such a model.Comment: 10 pages, 6 figures, Astrophys. J. 625 (scheduled for the 1 June 2005 issue

    On the tidal interaction of a solar-type star with an orbiting companion: Excitation of g mode oscillation and orbital evolution

    Get PDF
    We calculate the dynamical tides raised on a non-rotating solar-type star by a close stellar or planetary companion. Dissipation arising from a turbulent viscosity operating in the convection zone and radiative damping in the radiative core are considered. We compute the torque exerted on the star by a companion in circular orbit, and determine the potentially observable magnitude of the tidally induced velocity at the stellar photosphere. These calculations are compared with the results obtained by assuming that a very small frequency limit can be taken in order to calculate the tidal response (equilibrium tide). For a standard solar model, the latter is found to give a relatively poor approximation at the periods of interest of several days, even when the system is far from resonance with a normal mode. It is shown that although the companion may go through a succession of resonances as it spirals in under the action of the tides, for a fixed spectrum of normal modes its migration is controlled essentially by the non-resonant interaction. We find that the turbulent viscosity that is required to provide the observed circularization rates of main sequence solar-type binaries is about fifty times larger than that simply estimated from mixing length theory for non-rotating stars. We discuss the means by which this enhanced viscosity might be realized. These calculations are applied to 51 Pegasi. We show that the perturbed velocity induced by the tides at the stellar surface is too small to be observed.Comment: 36 pages including 6 PostScript figures, LaTex -- To be published in ApJ -- Also available at http://www.ucolick.org/~ct/home.htm

    Spectroscopy of the Supernova H0pe Host Galaxy at Redshift 1.78

    Full text link
    Supernova (SN) H0pe was discovered as a new transient in James Webb Space Telescope (JWST) NIRCam images of the galaxy cluster PLCK G165.7+67.0 taken as part of the "Prime Extragalactic Areas for Reionization and Lensing Science" (PEARLS) JWST GTO program (# 1176) on 2023 March 30 (AstroNote 2023-96; Frye et al. 2023). The transient is a compact source associated with a background galaxy that is stretched and triply-imaged by the cluster's strong gravitational lensing. This paper reports spectra in the 950-1370 nm observer frame of two of the galaxy's images obtained with Large Binocular Telescope (LBT) Utility Camera in the Infrared (LUCI) in longslit mode two weeks after the \JWST\ observations. The individual average spectra show the [OII] doublet and the Balmer and 4000 Angstrom breaks at redshift z=1.783+/-0.002. The CIGALE best-fit model of the spectral energy distribution indicates that SN H0pe's host galaxy is massive (Mstar~6x10^10 Msun after correcting for a magnification factor ~7) with a predominant intermediate age (~2 Gyr) stellar population, moderate extinction, and a magnification-corrected star formation rate ~13 Msun/yr, consistent with being below the main sequence of star formation. These properties suggest that H0pe might be a type Ia SN. Additional observations of SN H0pe and its host recently carried out with JWST (JWST-DD-4446; PI: B. Frye) will be able to both determine the SN classification and confirm its association with the galaxy analyzed in this work.Comment: 6 pages, 4 figures, Letter accepted for publication in Astronomy & Astrophysic

    EPOCHS VII: Discovery of high redshift (6.5<z<126.5 < z < 12) AGN candidates in JWST ERO and PEARLS data

    Full text link
    We present an analysis of a sample of robust high redshift galaxies selected photometrically from the `blank' fields of the Prime Extragalactic Areas for Reionization Science (PEARLS) survey and Early Release Observations (ERO) data of the James Webb Space Telescope (JWST) with the aim of selecting candidate high redshift active galactic nuclei (AGN). Sources were identified from the parent sample using a threefold selection procedure, which includes spectral energy distribution (SED) fitting to identify sources that are best fitted by AGN SED templates, a further selection based on the relative performance of AGN and non-AGN models, and finally morphological fitting to identify compact sources of emission, resulting in a purity-oriented procedure. Using this procedure, we identify a sample of nine AGN candidates at 6.5<z<126.5 < z < 12, from which we constrain their physical properties as well as measure a lower bound on the AGN fraction in this redshift range of 5±15 \pm 1\%. As this is an extreme lower limit due to our focus on purity and our SEDs being calibrated for unobscured Type 1 AGN, this demonstrates that AGN are perhaps quite common at this early epoch. The rest-frame UV colors of our candidate objects suggest that these systems are potentially candidate obese black hole galaxies (OBG), or AGN with very little galaxy component. We also investigate emission from our sample sources from fields overlapping with Chandra and VLA surveys, allowing us to place X-ray and 3 GHz radio detection limits on our candidates. Of note is a z=11.9z = 11.9 candidate source exhibiting an abrupt morphological shift in the reddest band as compared to the bluer bands, indicating a potential merger or an unusually strong outflow.Comment: Submitted to MNRAS, 12 pages, 11 figures, typos correcte

    Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas

    Get PDF
    Familial Non-Medullary Thyroid Carcinoma (fNMTC) represents 3–7% of all thyroid tumours and is associated with some of the highest familial risks among all cancers, with an inheritance pattern compatible with an autosomal dominant model with reduced penetrance. We previously mapped a predisposing locus, TCO (Thyroid tumour with Cell Oxyphilia) on chromosome 19p13.2, for a particular form of thyroid tumour characterised by cells with an abnormal proliferation of mitochondria (oxyphilic or oncocytic cells). In the present work, we report the systematic screening of 14 candidate genes mapping to the region of linkage in affected TCO members, that led us to identify two novel variants respectively in exon 9 and exon 13 of TIMM44, a mitochondrial inner membrane translocase for the import in the mitochondria of nuclear-encoded proteins. These variants were co-segregating with the TCO phenotype, were not present in a large group of controls and were predicted to negatively affect the protein (exon 9 change) or the transcript (exon 13 change). Functional analysis was performed in vitro for both changes and although no dramatic loss of function effects were identified for the mutant alleles, subtler effects might still be present that could alter Timm44 function and thus promote oncocytic tumour development. Thus we suggest that TIMM44 should be considered for further studies in independent samples of affected individuals with TCO

    Magellanic System Stars Identified in the SMACS J0723.3-7327 JWST ERO Images

    Full text link
    We identify 68 distant stars in JWST/NIRCam ERO images of the field of galaxy cluster SMACS J0723.3-7327 (SMACS 0723). Given the relatively small (\sim1010^{\circ}) angular separation between SMACS 0723 and the Large Magellanic Cloud, it is likely that these stars are associated with the LMC outskirts or Leading Arm. This is further bolstered by a spectral energy distribution analysis, which suggests an excess of stars at a physical distance of 4010040-100 kpc, consistent with being associated with or located behind the Magellanic system. In particular, we find that the overall surface density of stars brighter than 27.0 mag in the field of SMACS 0723 is \sim2.3 times that of stars in a blank field with similar galactic latitude (the North Ecliptic Pole Time Domain Field), and that the density of stars in the SMACS 0723 field with SED-derived distances consistent with the Magellanic system is \sim7.3 times larger than that of the blank field. The candidate stars at these distances are consistent with a stellar population at the same distance modulus with [Fe/H] =1.0= -1.0 and an age of \sim5.05.0 Gyr. On the assumption that all of the 68 stars are associated with the LMC, then the stellar density of the LMC at the location of the SMACS 0723 field is \sim710710 stars kpc3^{-3}, which helps trace the density of stars in the LMC outskirts.Comment: Submitted to ApJ, comments welcom
    corecore