42,700 research outputs found

    Analytical and experimental study of two concentric cylinders coupled by a fluid gap

    Get PDF
    From a structural point of view a liquid coolant type nuclear reactor consists of a heavy steel vessel containing the core and related mechanical components and filled with a hot fluid. This vessel is protected from the severe environment of the core by a shielding structure, the thermal liner, which is usually a relatively thin steel cylinder concentric with the reactor vessel and separated from it by a gap filled with the coolant fluid. This arrangement leads to a potential vibration problem if the fundamental frequency, or one of the higher natural vibration frequencies, of this liner system is close to the frequency of some vibration source present in the reactor vessel. The shell rigidly clamped at its base and free at the top was investigated since it is a better description of the conditions encountered in typical reactor designs

    Competing topological and Kondo insulator phases on a honeycomb lattice

    Full text link
    We investigate the competition between the spin-orbit interaction of itinerant electrons and their Kondo coupling with local moments densely distributed on the honeycomb lattice. We find that the model at half-filling displays a quantum phase transition between topological and Kondo insulators at a nonzero Kondo coupling. In the Kondo-screened case, tuning the electron concentration can lead to a new topological insulator phase. The results suggest that the heavy-fermion phase diagram contains a new regime with a competition among topological, Kondo-coherent and magnetic states, and that the regime may be especially relevant to Kondo lattice systems with 5d5d-conduction electrons. Finally, we discuss the implications of our results in the context of the recent experiments on SmB6_6 implicating the surface states of a topological insulator, as well as the existing experiments on the phase transitions in SmB6_6 under pressure and in CeNiSn under chemical pressure.Comment: (v3) Published version including the main text (5 pages + 4 figures) and a supplementary material discussing the effects of quantum fluctuations of the slave bosons and antiferromagnetic ordering of the local moments on the transitions among the Kondo, magnetic and topological state

    Kondo effect in coupled quantum dots with RKKY interaction: Finite temperature and magnetic field effects

    Full text link
    We study transport through two quantum dots coupled by an RKKY interaction as a function of temperature and magnetic field. By applying the Numerical Renormalization Group (NRG) method we obtain the transmission and the linear conductance. At zero temperature and magnetic field, we observe a quantum phase transition between the Kondo screened state and a local spin singlet as the RKKY interaction is tuned. Above the critical RKKY coupling the Kondo peak is split. However, we find that both finite temperature and magnetic field restore the Kondo resonance. Our results agree well with recent transport experiments on gold grain quantum dots in the presence of magnetic impurities.Comment: 4 pages, 5 figure

    New Predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    Full text link
    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at O(p4){\cal O}(p^4) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon.Comment: 15 pages, 3 figure

    Theory of ferromagnetism in (A,Mn)B semiconductors

    Full text link
    A brief review of theory of ferromagnetism of dilute magnetic semiconductors of the form (A,Mn)B based on the double exchange model is first given. A systematic investigation of the phenomena extending the current theory is outlined. We begin with an investigation of the regions of instability of the nonmagnetic towards the ferromagnetic state of a system of Mn-atoms doped in AB-type semiconductor. A self-consistent many-body theory of the ferromagnetic state is then developed, going beyond the mean field approaches by including fluctuations of the Mn-spins and the itinerant hole-gas. A functional theory suitable for computation of system properties such as Curie temperature as a function of hole and the Mn-concentration, spin-current, etc. is formulated.Comment: 16 page

    The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    Full text link
    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies, possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. However, the stripped extraplanar gas in one highly inclined galaxy (NGC 4569) shows a normal star formation efficiency with respect to the total gas. We propose this galaxy is different because it is observed long after peak pressure, and its extraplanar gas is now in a converging flow as it resettles back into the disk.Comment: 34 pages, 24 figures, accepted for publication by A&
    corecore