474 research outputs found
Endothelial MAPKs Direct ICAM-1 Signaling to Divergent Inflammatory Functions.
Lymphocyte transendothelial migration (TEM) is critically dependent on intraendothelial signaling triggered by adhesion to ICAM-1. Here we show that endothelial MAPKs ERK, p38, and JNK mediate diapedesis-related and diapedesis-unrelated functions of ICAM-1 in cerebral and dermal microvascular endothelial cells (MVECs). All three MAPKs were activated by ICAM-1 engagement, either through lymphocyte adhesion or Ab-mediated clustering. MAPKs were involved in ICAM-1-dependent expression of TNF-α in cerebral and dermal MVECs, and CXCL8, CCL3, CCL4, VCAM-1, and cyclooxygenase 2 (COX-2) in cerebral MVECs. Endothelial JNK and to a much lesser degree p38 were the principal MAPKs involved in facilitating diapedesis of CD4(+) lymphocytes across both types of MVECs, whereas ERK was additionally required for TEM across dermal MVECs. JNK activity was critical for ICAM-1-induced F-actin rearrangements. Furthermore, activation of endothelial ICAM-1/JNK led to phosphorylation of paxillin, its association with VE-cadherin, and internalization of the latter. Importantly ICAM-1-induced phosphorylation of paxillin was required for lymphocyte TEM and converged functionally with VE-cadherin phosphorylation. Taken together we conclude that during lymphocyte TEM, ICAM-1 signaling diverges into pathways regulating lymphocyte diapedesis, and other pathways modulating gene expression thereby contributing to the long-term inflammatory response of the endothelium
Design Principles for Plasmonic Nanoparticle Devices
For all applications of plasmonics to technology it is required to tailor the
resonance to the optical system in question. This chapter gives an
understanding of the design considerations for nanoparticles needed to tune the
resonance. First the basic concepts of plasmonics are reviewed with a focus on
the physics of nanoparticles. An introduction to the finite element method is
given with emphasis on the suitability of the method to nanoplasmonic device
simulation. The effects of nanoparticle shape on the spectral position and
lineshape of the plasmonic resonance are discussed including retardation and
surface curvature effects. The most technologically important plasmonic
materials are assessed for device applicability and the importance of
substrates in light scattering is explained. Finally the application of
plasmonic nanoparticles to photovoltaic devices is discussed.Comment: 29 pages, 15 figures, part of an edited book: "Linear and Non-Linear
Nanoplasmonics
A review of the optical properties of alloys and intermetallics for plasmonics
Alternative materials are required to enhance the efficacy of plasmonic
devices. We discuss the optical properties of a number of alloys, doped metals,
intermetallics, silicides, metallic glasses and high pressure materials. We
conclude that due to the probability of low frequency interband transitions,
materials with partially occupied d-states perform poorly as plasmonic
materials, ruling out many alloys, intermetallics and silicides as viable. The
increased probability of electron-electron and electron-phonon scattering rules
out many doped and glassy metals.Comment: 26 pages, 10 figures, 3 table
Bridging the gap between energy and the environment
Meeting the world’s energy demand is a major challenge for society over the coming century. To identify the most sustainable energy pathways to meet this demand, analysis of energy systems on which policy is based must move beyond the current primary focus on carbon to include a broad range of ecosystem services on which human well-being depends. Incorporation of a broad set of ecosystem services into the design of energy policy will differentiates between energy technology options to identify policy options that reconcile national and international obligations to address climate change and the loss of biodiversity and ecosystem services. In this paper we consider our current understanding of the implications of energy systems for ecosystem services and identify key elements of an assessment. Analysis must consider the full life cycle of energy systems, the territorial and international footprint, use a consistent ecosystem service framework that incorporates the value of both market and non-market goods, and consider the spatial and temporal dynamics of both the energy and environmental system. While significant methodological challenges exist, the approach we detail can provide the holistic view of energy and ecosystem services interactions required to inform the future of global energy policy
Pathophysiology, risk, diagnosis, and management of venous thrombosis in space: where are we now?
The recent incidental discovery of an asymptomatic venous thrombosis (VT) in the internal jugular vein of an astronaut on the International Space Station prompted a necessary, immediate response from the space medicine community. The European Space Agency formed a topical team to review the pathophysiology, risk and clinical presentation of venous thrombosis and the evaluation of its prevention, diagnosis, mitigation, and management strategies in spaceflight. In this article, we discuss the findings of the ESA VT Topical Team over its 2-year term, report the key gaps as we see them in the above areas which are hindering understanding VT in space. We provide research recommendations in a stepwise manner that build upon existing resources, and highlight the initial steps required to enable further evaluation of this newly identified pertinent medical risk
Analysis of in vitro secretion profiles from adipose-derived cell populations
BACKGROUND: Adipose tissue is an attractive source of cells for therapeutic purposes because of the ease of harvest and the high frequency of mesenchymal stem cells (MSCs). Whilst it is clear that MSCs have significant therapeutic potential via their ability to secrete immuno-modulatory and trophic cytokines, the therapeutic use of mixed cell populations from the adipose stromal vascular fraction (SVF) is becoming increasingly common. METHODS: In this study we have measured a panel of 27 cytokines and growth factors secreted by various combinations of human adipose-derived cell populations. These were 1. co-culture of freshly isolated SVF with adipocytes, 2. freshly isolated SVF cultured alone, 3. freshly isolated adipocytes alone and 4. adherent adipose-derived mesenchymal stem cells (ADSCs) at passage 2. In addition, we produced an ‘in silico’ dataset by combining the individual secretion profiles obtained from culturing the SVF with that of the adipocytes. This was compared to the secretion profile of co-cultured SVF and adipocytes. Two-tailed t-tests were performed on the secretion profiles obtained from the SVF, adipocytes, ADSCs and the ‘in silico’ dataset and compared to the secretion profiles obtained from the co-culture of the SVF with adipocytes. A p-value of < 0.05 was considered statistically different. To assess the overall changes that may occur as a result of co-culture we compared the proteomes of SVF and SVF co-cultured with adipocytes using iTRAQ quantitative mass spectrometry. RESULTS: A co-culture of SVF and adipocytes results in a distinct secretion profile when compared to all other adipose-derived cell populations studied. This illustrates that cellular crosstalk during co-culture of the SVF with adipocytes modulates the production of cytokines by one or more cell types. No biologically relevant differences were detected in the proteomes of SVF cultured alone or co-cultured with adipocytes. CONCLUSIONS: The use of mixed adipose cell populations does not appear to induce cellular stress and results in enhanced secretion profiles. Given the importance of secreted cytokines in cell therapy, the use of a mixed cell population such as the SVF with adipocytes may be considered as an alternative to MSCs or fresh SVF alone
Functional Role of Kallikrein 6 in Regulating Immune Cell Survival
Kallikrein 6 (KLK6) is a newly identified member of the kallikrein family of secreted serine proteases that prior studies indicate is elevated at sites of central nervous system (CNS) inflammation and which shows regulated expression with T cell activation. Notably, KLK6 is also elevated in the serum of multiple sclerosis (MS) patients however its potential roles in immune function are unknown. Herein we specifically examine whether KLK6 alters immune cell survival and the possible mechanism by which this may occur.Using murine whole splenocyte preparations and the human Jurkat T cell line we demonstrate that KLK6 robustly supports cell survival across a range of cell death paradigms. Recombinant KLK6 was shown to significantly reduce cell death under resting conditions and in response to camptothecin, dexamethasone, staurosporine and Fas-ligand. Moreover, KLK6-over expression in Jurkat T cells was shown to generate parallel pro-survival effects. In mixed splenocyte populations the vigorous immune cell survival promoting effects of KLK6 were shown to include both T and B lymphocytes, to occur with as little as 5 minutes of treatment, and to involve up regulation of the pro-survival protein B-cell lymphoma-extra large (Bcl-XL), and inhibition of the pro-apoptotic protein Bcl-2-interacting mediator of cell death (Bim). The ability of KLK6 to promote survival of splenic T cells was also shown to be absent in cell preparations derived from PAR1 deficient mice.KLK6 promotes lymphocyte survival by a mechanism that depends in part on activation of PAR1. These findings point to a novel molecular mechanism regulating lymphocyte survival that is likely to have relevance to a range of immunological responses that depend on apoptosis for immune clearance and maintenance of homeostasis
Boundary Spanners and Calculative Practices
This paper questions to what extent particular calculative practices used for inter organisational decision-making help or hinder boundary spanners meet performativity ideals. It uses programmatic rationalities of government as a framework to study reciprocity between them and the conditions of performativity. Empirical data was collected from health care commissioning spaces of English NHS. Data triangulation was achieved through documentary analysis, data collected through interviews, and observation notes taken in local commissioning meetings and national conferences. Findings revealed an apparent lack of reciprocity between programmatic rationality and calculative practices surrounding the commissioning activities of boundary spanners. As a consequence, in local commissioning situations boundary spanners with formal roles used calculative practices differently than semi-formal boundary spanners. Unlike their formal counterparts, who used only accounting information in their calculative practices, semi-formal boundary spanners incorporated non-accounting information and devised alternative calculative practices. In addition, while formal boundary spanners on NHS Committees used calculative practices in maintaining clear boundaries between commissioning and provider organisations, semi-formal boundary spanners observed made use of the data of both parties in order to reach inter organisational decisions. The study has three main contributions. First, it differentiates boundary spanners and explains differences in their interaction with calculative practices. Second, it introduces the concept of reciprocity to inter-organisational studies in accounting. Third, it shows how conditions of performativity reflected in micro settings influenced how semi-formal boundary spanners used calculative practices (and other supplementary information) to achieve performance ideals of government programmes
- …