45,777 research outputs found

    High efficiency solar cell processing

    Get PDF
    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined

    Recent developments in thin silicon solar cells

    Get PDF
    Fifty micron thick cells 2x4 sq cm area with coplanar back contacts were made with good yield, and with output equivalent to conventional top/bottom contact cells of the same thickness. A wraparound junction (WAJ) design was selected, and used successfully. The low alpha cells delivered were all above 12%, the average efficiency was 13% and the best was 14%. The overall yield was 35 to 40%, comparable to that for conventional 50 micron cells. The process sequence was moderately complex, but showed good reproducibility. The CBC cells performed wall under several important environmental tests. High alpha CBC cells were made, with about 1% increase in conversion efficiency. The most important design criteria were the choice of back surface N+ and P+ areas

    Branes from a non-Abelian (2,0) tensor multiplet with 3-algebra

    Full text link
    In this paper, we study the equations of motion for non-Abelian N=(2,0) tensor multiplets in six dimensions, which were recently proposed by Lambert and Papageorgakis. Some equations are regarded as constraint equations. We employ a loop extension of the Lorentzian three-algebra (3-algebra) and examine the equations of motion around various solutions of the constraint equations. The resultant equations take forms that allow Lagrangian descriptions. We find various (5+d)-dimensional Lagrangians and investigate the relation between them from the viewpoint of M-theory duality.Comment: 44+1 pages, reference added, typos corrected, and several discussions added; v3, reference added, many typos corrected, the language improved; v4, some typos and references corrected, final version to appear in J. Phys.

    The Evolution of Post-Starburst Galaxies from z∼1z\sim1 to the Present

    Full text link
    Post-starburst galaxies are in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies, and therefore hold important clues for our understanding of galaxy evolution. In this paper, we systematically searched for and identified a large sample of post-starburst galaxies from the spectroscopic dataset of the Sloan Digital Sky Survey (SDSS) Data Release 9. In total, we found more than 6000 objects with redshifts between z∼0.05z\sim0.05 and z∼1.3z\sim1.3, making this the largest sample of post-starburst galaxies in the literature. We calculated the luminosity function of the post-starburst galaxies using two uniformly selected subsamples: the SDSS Main Galaxy Sample and the Baryon Oscillation Spectroscopic Survey CMASS Sample. The luminosity functions are reasonably fit by half-Gaussian functions. The peak magnitudes shift as a function of redshift from M∼−23.5M\sim-23.5 at z∼0.8z\sim0.8 to M∼−20.3M\sim-20.3 at z∼0.1z\sim0.1. This is consistent with the downsizing trend, whereby more massive galaxies form earlier than low-mass galaxies. We compared the mass of the post-starburst stellar population found in our sample to the decline of the global star-formation rate and found that only a small amount (∼1%\sim1\%) of all star-formation quenching in the redshift range z=0.2−0.7z=0.2-0.7 results in post-starburst galaxies in the luminosity range our sample is sensitive to. Therefore, luminous post-starburst galaxies are not the place where most of the decline in star-formation rate of the universe is happening.Comment: 26 pages, 24 figures, 8 tables. Accepted for publication in The Astrophysical Journa

    Noncommutative D-Brane in Non-Constant NS-NS B Field Background

    Get PDF
    We show that when the field strength H of the NS-NS B field does not vanish, the coordinates X and momenta P of an open string endpoints satisfy a set of mixed commutation relations among themselves. Identifying X and P with the coordinates and derivatives of the D-brane world volume, we find a new type of noncommutative spaces which is very different from those associated with a constant B field background.Comment: 11 pages, Latex, minor modification

    Momentum Analysis in Strong-field Double Ionization

    Full text link
    We provide a basis for the laser intensity dependence of the momentum distributions of electrons and ions arising from strong-field non-sequential double ionization (NSDI) at intensities in the range I=1−6.5×1014W/cm2I=1-6.5 \times 10^{14} W/cm^2. To do this we use a completely classical method introduced previously \cite{ho-etal05}. Our calculated results reproduce the features of experimental observations at different laser intensities and depend on just two distinct categories of electon trajectories.Comment: 5 pages, 7 figure

    A halo and a blow-out in NGC 253

    Get PDF
    We present the discovery of a 'synchrotron halo' in NGC 253. NGC 253 is an inclined, dusty, barred Sc galaxy in the Sculptor Group. It is also one of the prototype nuclear star burst galaxies. Very Large Array observations at 327 MHz and 1.4 GHz have revealed a synchrotron emitting 'halo' extending 9 kpc above and below the plane of NGC 253 (assuming a distance of 4 Mpc). The spectral index for the radio emission steepens from -0.7 in the disk to -1.0 in the halo. The fractional polarization at 1.4 GHz increases from less than or equal to 2 percent in the disk up to 20 percent in the halo, and the magnetic field vectors project parallel to the plane over most of the halo

    Electrometry using the quantum Hall effect in a bilayer 2D electron system

    Full text link
    We discuss the development of a sensitive electrometer that utilizes a two-dimensional electron gas (2DEG) in the quantum Hall regime. As a demonstration, we measure the evolution of the Landau levels in a second, nearby 2DEG as the applied perpendicular magnetic field is changed, and extract an effective mass for electrons in GaAs that agrees within experimental error with previous measurements.Comment: 3.5 pages, 3 figures, submitted to APL
    • …
    corecore