1,371 research outputs found

    Rotation And Magnetic Evolution Of Superconducting Strange Stars

    Get PDF
    Is pulsar make up of strange matter? The magnetic field decay of a pulsar may be able to give us an answer. Since Cooper pairing of quarks occurs inside a sufficiently cold strange star, the strange stellar core is superconducting. In order to compensate the effect of rotation, different superconducting species inside a rotating strange star try to set up different values of London fields. Thus, we have a frustrated system. Using Ginzburg-Landau formalism, I solved the problem of rotating a superconducting strange star: Instead of setting up a global London field, vortex bundles carrying localized magnetic fields are formed. Moreover, the number density of vortex bundles is directly proportional to the angular speed of the star. Since it is energetically favorable for the vortex bundles to pin to magnetic flux tubes, the rotational dynamics and magnetic evolution of a strange star are coupled together, leading to the magnetic flux expulsion as the star slows down. I investigate this effect numerically and find that the characteristic field decay time is much less than 20~Myr in all reasonable parameter region. On the other hand, the characteristic magnetic field decay time for pulsars is 20\geq 20~Myr. Thus, my finding cast doubt on the hypothesis that pulsars are strange stars.Comment: 42 pages (including 13 eps figures) in AASTex 4.0 style with AMSFont

    Large scale cosmic-ray anisotropy with KASCADE

    Full text link
    The results of an analysis of the large scale anisotropy of cosmic rays in the PeV range are presented. The Rayleigh formalism is applied to the right ascension distribution of extensive air showers measured by the KASCADE experiment.The data set contains about 10^8 extensive air showers in the energy range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right ascension distributions in this energy range. This accounts for all showers as well as for subsets containing showers induced by predominantly light respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary energy.Comment: accepted by The Astrophysical Journa

    Photon Physics in Heavy Ion Collisions at the LHC

    Full text link
    Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One figure added in chapter 5 (comparison with PHENIX data). Some figures and correponding text corrected in chapter 6 (off-chemical equilibrium thermal photon rates). Some figures modified in chapter 7 (off-chemical equilibrium photon rates) and comparison with PHENIX data adde

    Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons

    Full text link
    The flux of cosmic-ray induced single hadrons near sea level has been measured with the large hadron calorimeter of the KASCADE experiment. The measurement corroborates former results obtained with detectors of smaller size if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be described with a power law parametrized as dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV region the proton flux compares well with the results from recent measurements of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa

    Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment

    Get PDF
    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2γR_{2\gamma}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of 20°\approx 20\degree to 80°80\degree. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12°12\degree, as well as symmetric M{\o}ller/Bhabha calorimeters at 1.29°1.29\degree. A total integrated luminosity of 4.5~fb1^{-1} was collected. In the extraction of R2γR_{2\gamma}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2γR_{2\gamma}, presented here for a wide range of virtual photon polarization 0.456<ϵ<0.9780.456<\epsilon<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table

    On the gravitodynamics of moving bodies

    Full text link
    In the present work we propose a generalization of Newton's gravitational theory from the original works of Heaviside and Sciama, that takes into account both approaches, and accomplishes the same result in a simpler way than the standard cosmological approach. The established formulation describes the local gravitational field related to the observables and effectively implements the Mach's principle in a quantitative form that retakes Dirac's large number hypothesis. As a consequence of the equivalence principle and the application of this formulation to the observable universe, we obtain, as an immediate result, a value of Omega = 2. We construct a dynamic model for a galaxy without dark matter, which fits well with recent observational data, in terms of a variable effective inertial mass that reflects the present dynamic state of the universe and that replicates from first principles, the phenomenology proposed in MOND. The remarkable aspect of these results is the connection of the effect dubbed dark matter with the dark energy field, which makes it possible for us to interpret it as longitudinal gravitational waves.Comment: 18 pages, 4 figures. Final version: almost identical to the reference journal; Cent. Eur. J. Phys. 201

    Partial-wave analysis of the eta pi+ pi- system produced in the reaction pi-p --> eta pi+ pi- n at 18 GeV/c

    Full text link
    A partial-wave analysis of 9082 eta pi+ pi- n events produced in the reaction pi- p --> eta pi+ pi- n at 18.3 GeV/c has been carried out using data from experiment 852 at Brookhaven National Laboratory. The data are dominated by J^{PC} = 0^{-+} partial waves consistent with observation of the eta(1295) and the eta(1440). The mass and width of the eta(1295) were determined to be 1282 +- 5 MeV and 66 +- 13 Mev respectively while the eta(1440) was observed with a mass of 1404 +- 6 MeV and width of 80 +- 21 MeV. Other partial waves of importance include the 1++ and the 1+- waves. Results of the partial wave analysis are combined with results of other experiments to estimate f1(1285) branching fractions. These values are considerably different from current values determined without the aid of amplitude analyses.Comment: 22 pages, 8 figure

    Observation of exotic meson production in the reaction πpηπp \pi^{-} p \to \eta^{\prime} \pi^- p at 18 GeV/c

    Full text link
    An amplitude analysis of an exclusive sample of 5765 events from the reaction πpηπp\pi^{-} p \to \eta^{\prime} \pi^- p at 18 GeV/c is described. The ηπ\eta^{\prime} \pi^- production is dominated by natural parity exchange and by three partial waves: those with JPC=1+,2++,J^{PC} = 1^{-+}, 2^{++}, and 4++4^{++}. A mass-dependent analysis of the partial-wave amplitudes indicates the production of the a2(1320)a_2(1320) meson as well as the a4(2040)a_4(2040) meson, observed for the first time decaying to ηπ\eta^{\prime}\pi^-. The dominant, exotic (non-qqˉ)q\bar{q}) 1+1^{-+} partial wave is shown to be resonant with a mass of 1.597±0.0100.010+0.0451.597 \pm 0.010^{+0.045}_{-0.010} GeV/c^2 and a width of 0.340±0.040±0.0500.340 \pm 0.040 \pm 0.050 GeV/c^2 . This exotic state, the π1(1600)\pi_1(1600), is produced with a tt dependence which is different from that of the a2(1320)a_2(1320) meson, indicating differences between the production mechanisms for the two states.Comment: 5 pages with 4 figure

    A partial wave analysis of the π0π0\pi ^0\pi ^0 system produced in πp\pi ^-p charge exchange collisions

    Full text link
    A partial wave analysis of the of the π0π0\pi ^0\pi ^0 system produced in the charge exchange reaction: πpπ0π0n\pi ^-p\to \pi ^0\pi ^0n at an incident momentum of 18.3GeV/c18.3 GeV/c is presented as a function of π0π0{\pi ^0\pi ^0} invariant mass, mπ0π0m_{\pi^0\pi^0}, and momentum transfer squared, t| {t} |, from the incident π\pi^- to the outgoing π0π0{\pi ^0\pi ^0} system.Comment: 24 pages total,8 pages text, 14 figures, 1 table. Submitted to Phys Rev
    corecore