28,520 research outputs found

    The 727 approach energy management system avionics specification (preliminary)

    Get PDF
    Hardware and software requirements for an Approach Energy Management System (AEMS) consisting of an airborne digital computer and cockpit displays are presented. The displays provide the pilot with a visual indication of when to manually operate the gear, flaps, and throttles during a delayed flap approach so as to reduce approach time, fuel consumption, and community noise. The AEMS is an independent system that does not interact with other navigation or control systems, and is compatible with manually flown or autopilot coupled approaches. Operational use of the AEMS requires a DME ground station colocated with the flight path reference

    SAFT-γ Force Field for the Simulation of Molecular Fluids 6. Binary and ternary mixtures comprising water, carbon dioxide, and n-alkanes

    Get PDF
    AbstractThe SAFT-γ coarse graining methodology (Avendaño et al., 2011) is used to develop force fields for the fluid-phase behaviour of binary and ternary mixtures comprising water, carbon dioxide, and n-alkanes. The effective intermolecular interactions between the coarse grained (CG) segments are directly related to macroscopic thermodynamic properties by means of the SAFT-γ equation of state for molecular segments represented with the Mie (generalised Lennard–Jones) intermolecular potential (Papaioannou et al., 2014). The unlike attractive interactions between the components of the mixtures are represented with a single adjustable parameter, which is shown to be transferable over a wide range of conditions. The SAFT-γ Mie CG force fields are used in molecular-dynamics simulations to predict the challenging (vapour+liquid) and (liquid+liquid) fluid-phase equilibria characterising these mixtures, and to study phenomena that are not accessible directly from the equation of state, such as the interfacial properties. The description of the fluid-phase equilibria and interfacial properties predicted with the SAFT-γ Mie force fields is in excellent agreement with the corresponding experimental data, and of comparable if not superior quality to that reported for the more sophisticated atomistic and united-atom models

    Variational principle for the Wheeler-Feynman electrodynamics

    Full text link
    We adapt the formally-defined Fokker action into a variational principle for the electromagnetic two-body problem. We introduce properly defined boundary conditions to construct a Poincare-invariant-action-functional of a finite orbital segment into the reals. The boundary conditions for the variational principle are an endpoint along each trajectory plus the respective segment of trajectory for the other particle inside the lightcone of each endpoint. We show that the conditions for an extremum of our functional are the mixed-type-neutral-equations with implicit state-dependent-delay of the electromagnetic-two-body problem. We put the functional on a natural Banach space and show that the functional is Frechet-differentiable. We develop a method to calculate the second variation for C2 orbital perturbations in general and in particular about circular orbits of large enough radii. We prove that our functional has a local minimum at circular orbits of large enough radii, at variance with the limiting Kepler action that has a minimum at circular orbits of arbitrary radii. Our results suggest a bifurcation at some radius below which the circular orbits become saddle-point extrema. We give a precise definition for the distributional-like integrals of the Fokker action and discuss a generalization to a Sobolev space of trajectories where the equations of motion are satisfied almost everywhere. Last, we discuss the existence of solutions for the state-dependent delay equations with slightly perturbated arcs of circle as the boundary conditions and the possibility of nontrivial solenoidal orbits

    Quadrupole collective modes in trapped finite-temperature Bose-Einstein condensates

    Full text link
    Finite temperature simulations are used to study quadrupole excitations of a trapped Bose-Einstein condensate. We focus specifically on the m=0 mode, where a long-standing theoretical problem has been to account for an anomalous variation of the mode frequency with temperature. We explain this behavior in terms of the excitation of two separate modes, corresponding to coupled motion of the condensate and thermal cloud. The relative amplitudes of the modes depends sensitively on the temperature and on the frequency of the harmonic drive used to excite them. Good agreement with experiment is found for appropriate drive frequencies.Comment: 4 pages, 3 figure

    On the universality of the scaling of fluctuations in traffic on complex networks

    Full text link
    We study the scaling of fluctuations with the mean of traffic in complex networks using a model where the arrival and departure of "packets" follow exponential distributions, and the processing capability of nodes is either unlimited or finite. The model presents a wide variety of exponents between 1/2 and 1 for this scaling, revealing their dependence on the few parameters considered, and questioning the existence of universality classes. We also report the experimental scaling of the fluctuations in the Internet for the Abilene backbone network. We found scaling exponents between 0.71 and 0.86 that do not fit with the exponent 1/2 reported in the literature.Comment: 4 pages, 4 figure

    Amplitude death in coupled chaotic oscillators

    Full text link
    Amplitude death can occur in chaotic dynamical systems with time-delay coupling, similar to the case of coupled limit cycles. The coupling leads to stabilization of fixed points of the subsystems. This phenomenon is quite general, and occurs for identical as well as nonidentical coupled chaotic systems. Using the Lorenz and R\"ossler chaotic oscillators to construct representative systems, various possible transitions from chaotic dynamics to fixed points are discussed.Comment: To be published in PR

    Advanced action in classical electrodynamics

    Get PDF
    The time evolution of a charged point particle is governed by a second-order integro-differential equation that exhibits advanced effects, in which the particle responds to an external force before the force is applied. In this paper we give a simple physical argument that clarifies the origin and physical meaning of these advanced effects, and we compare ordinary electrodynamics with a toy model of electrodynamics in which advanced effects do not occur.Comment: 12 pages, 5 figure

    Explosive Decomposition in Ultrarelativistic Heavy Ion Collision

    Get PDF
    Recent results from Au+Au collisions at BNL-RHIC energy hint at explosive hadron production at the QCD transition rather than soft hydrodynamic evolution. We speculate that this is due to a rapid variation of the effective potential for QCD close to Tc. Performing real-time lattice simulations of an effective theory we show that the fast evolution of the potential leads to ``explosive'' spinodal decomposition rather than bubble nucleation or critical slowing down

    Addition theorems for spin spherical harmonics. II Results

    Full text link
    Based on the results of part I, we obtain the general form of the addition theorem for spin spherical harmonics and give explicit results in the cases involving one spin-ss' and one spin-ss spherical harmonics with s,s=1/2s',s=1/2, 1, 3/2, and ss=0|s'-s|=0, 1. We obtain also a fully general addition theorem for one scalar and one tensor spherical harmonic of arbitrary rank. A variety of bilocal sums of ordinary and spin spherical harmonics are given in explicit form, including a general explicit expression for bilocal spherical harmonics
    corecore