14,335 research outputs found

    Effective potential for Polyakov loops from a center symmetric effective theory in three dimensions

    Full text link
    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for the Wilson line which includes a "fuzzy" bag term to generate non-perturbative fluctuations. The effective potential for the Polyakov loop is extracted from the simulations including all modes of the loop as well as for cooled configuration where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram.Comment: 10 pages, 22 figures, v2: published version (minor clarifications, update of reference list

    Thermodynamics of two lattice ice models in three dimensions

    Full text link
    In a recent paper we introduced two Potts-like models in three dimensions, which share the following properties: (A) One of the ice rules is always fulfilled (in particular also at infinite temperature). (B) Both ice rules hold for groundstate configurations. This allowed for an efficient calculation of the residual entropy of ice I (ordinary ice) by means of multicanonical simulations. Here we present the thermodynamics of these models. Despite their similarities with Potts models, no sign of a disorder-order phase transition is found.Comment: 5 pages, 7 figure

    On the nature of Bose-Einstein condensation enhanced by localization

    Full text link
    In a previous paper we established that for the perfect Bose gas and the mean-field Bose gas with an external random or weak potential, whenever there is generalized Bose-Einstein condensation in the eigenstates of the single particle Hamiltonian, there is also generalized condensation in the kinetic energy states. In these cases Bose-Einstein condensation is produced or enhanced by the external potential. In the present paper we establish a criterion for the absence of condensation in single kinetic energy states and prove that this criterion is satisfied for a class of random potentials and weak potentials. This means that the condensate is spread over an infinite number of states with low kinetic energy without any of them being macroscopically occupied

    Potts models in the continuum. Uniqueness and exponential decay in the restricted ensembles

    Full text link
    In this paper we study a continuum version of the Potts model. Particles are points in R^d, with a spin which may take S possible values, S being at least 3. Particles with different spins repel each other via a Kac pair potential. In mean field, for any inverse temperature there is a value of the chemical potential at which S+1 distinct phases coexist. For each mean field pure phase, we introduce a restricted ensemble which is defined so that the empirical particles densities are close to the mean field values. Then, in the spirit of the Dobrushin Shlosman theory, we get uniqueness and exponential decay of correlations when the range of the interaction is large enough. In a second paper, we will use such a result to implement the Pirogov-Sinai scheme proving coexistence of S+1 extremal DLR measures.Comment: 72 pages, 1 figur

    Scientific, institutional and personal rivalries among Soviet geographers in the late Stalin era

    Get PDF
    Scientific, institutional and personal rivalries between three key centres of geographical research and scholarship (the Academy of Sciences Institute of Geography and the Faculties of Geography at Moscow and Leningrad State Universities) are surveyed for the period from 1945 to the early 1950s. It is argued that the debates and rivalries between members of the three institutions appear to have been motivated by a variety of scientific, ideological, institutional and personal factors, but that genuine scientific disagreements were at least as important as political and ideological factors in influencing the course of the debates and in determining their final outcome

    Measurement of the average shape of longitudinal profiles of cosmic-ray air showers at the Pierre Auger Observatory

    Get PDF
    The profile of the longitudinal development of showers produced by ultra-high energy cosmic rays carries information related to the interaction properties of the primary particles with atmospheric nuclei. In this work, we present the first measurement of the average shower pro file in traversed atmospheric depth at the Pierre Auger Observatory. The shapes of profiles are well reproduced by the Gaisser-Hillas parametrization within the range studied, for E &gt; 10(17.8) eV. A detailed analysis of the systematic uncertainties is performed using ten years of data and a full detector simulation. The average shape is quantified using two variables related to the width and asymmetry of the profile, and the results are compared with predictions of hadronic interaction models for different primary particles.</p

    Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory

    Get PDF
    With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60 degrees and 84 degrees. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km(2) with radio signals detectable in the 30 to 80 MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or scattering in the atmosphere, the area illuminated by radio signals grows with the zenith angle of the air shower. Inclined air showers with EeV energies are thus measurable with sparse radio-antenna arrays with grid sizes of a km or more. This is particularly attractive as radio detection provides direct access to the energy in the electromagnetic cascade of an air shower, which in case of inclined air showers is not accessible by arrays of particle detectors on the ground.</p

    Inflation from D3-brane motion in the background of D5-branes

    Full text link
    We study inflation arising from the motion of a BPS D3-brane in the background of a stack of k parallel D5-branes. There are two scalar fields in this set up-- (i) the radion field R, a real scalar field, and (ii) a complex tachyonic scalar field chi living on the world volume of the open string stretched between the D3 and D5 branes. We find that inflation is realized by the potential of the radion field, which satisfies observational constraints coming from the Cosmic Microwave Background. After the radion becomes of order the string length scale l_s, the dynamics is governed by the potential of the complex scalar field. Since this field has a standard kinematic term, reheating can be successfully realized by the mechanism of tachyonic preheating with spontaneous symmetry breaking.Comment: 10 pages, 4 figures. Minor clarifications and references added. Version to appear in Phys. Rev.

    The whole and its parts : why and how to disentangle plant communities and synusiae in vegetation classification

    Get PDF
    Most plant communities consist of different structural and ecological subsets, ranging from cryptogams to different tree layers. The completeness and approach with which these subsets are sampled have implications for vegetation classification. Non‐vascular plants are often omitted or sometimes treated separately, referring to their assemblages as “synusiae” (e.g. epiphytes on bark, saxicolous species on rocks). The distinction of complete plant communities (phytocoenoses or holocoenoses) from their parts (synusiae or merocoenoses) is crucial to avoid logical problems and inconsistencies of the resulting classification systems. We here describe theoretical differences between the phytocoenosis as a whole and its parts, and outline consequences of this distinction for practise and terminology in vegetation classification. To implement a clearer separation, we call for modifications of the International Code of Phytosociological Nomenclature and the EuroVegChecklist. We believe that these steps will make vegetation classification systems better applicable and raise the recognition of the importance of non‐vascular plants in the vegetation as well as their interplay with vascular plants

    Approximating the Maximum Overlap of Polygons under Translation

    Full text link
    Let PP and QQ be two simple polygons in the plane of total complexity nn, each of which can be decomposed into at most kk convex parts. We present an (1−Δ)(1-\varepsilon)-approximation algorithm, for finding the translation of QQ, which maximizes its area of overlap with PP. Our algorithm runs in O(cn)O(c n) time, where cc is a constant that depends only on kk and Δ\varepsilon. This suggest that for polygons that are "close" to being convex, the problem can be solved (approximately), in near linear time
    • 

    corecore