92 research outputs found

    Bifractality of the Devil's staircase appearing in the Burgers equation with Brownian initial velocity

    Full text link
    It is shown that the inverse Lagrangian map for the solution of the Burgers equation (in the inviscid limit) with Brownian initial velocity presents a bifractality (phase transition) similar to that of the Devil's staircase for the standard triadic Cantor set. Both heuristic and rigorous derivations are given. It is explained why artifacts can easily mask this phenomenon in numerical simulations.Comment: 12 pages, LaTe

    Single-point velocity distribution in turbulence

    Full text link
    We show that the tails of the single-point velocity probability distribution function (PDF) are generally non-Gaussian in developed turbulence. By using instanton formalism for the Navier-Stokes equation, we establish the relation between the PDF tails of the velocity and those of the external forcing. In particular, we show that a Gaussian random force having correlation scale LL and correlation time τ\tau produces velocity PDF tails lnP(v)v4\ln{\cal P}(v)\propto-v^4 at vvrms,L/τv\gg v_{rms}, L/\tau. For a short-correlated forcing when τL/vrms\tau\ll L/v_{rms} there is an intermediate asymptotics lnP(v)v3\ln {\cal P}(v)\propto-v^3 at L/τvvrmsL/\tau\gg v\gg v_{rms}.Comment: 9 pages, revtex, no figure

    Observation of inertial energy cascade in interplanetary space plasma

    Get PDF
    We show in this article direct evidence for the presence of an inertial energy cascade, the most characteristic signature of hydromagnetic turbulence (MHD), in the solar wind as observed by the Ulysses spacecraft. After a brief rederivation of the equivalent of Yaglom's law for MHD turbulence, we show that a linear relation is indeed observed for the scaling of mixed third order structure functions involving Els\"asser variables. This experimental result, confirming the prescription stemming from a theorem for MHD turbulence, firmly establishes the turbulent character of low-frequency velocity and magnetic field fluctuations in the solar wind plasma

    Vortex tubes in velocity fields of laboratory isotropic turbulence: dependence on the Reynolds number

    Full text link
    The streamwise and transverse velocities are measured simultaneously in isotropic grid turbulence at relatively high Reynolds numbers, Re(lambda) = 110-330. Using a conditional averaging technique, we extract typical intermittency patterns, which are consistent with velocity profiles of a model for a vortex tube, i.e., Burgers vortex. The radii of the vortex tubes are several of the Kolmogorov length regardless of the Reynolds number. Using the distribution of an interval between successive enhancements of a small-scale velocity increment, we study the spatial distribution of vortex tubes. The vortex tubes tend to cluster together. This tendency is increasingly significant with the Reynolds number. Using statistics of velocity increments, we also study the energetical importance of vortex tubes as a function of the scale. The vortex tubes are important over the background flow at small scales especially below the Taylor microscale. At a fixed scale, the importance is increasingly significant with the Reynolds number.Comment: 8 pages, 3 PS files for 8 figures, to appear in Physical Review

    Generation of small-scale structures in the developed turbulence

    Get PDF
    The Navier-Stokes equation for incompressible liquid is considered in the limit of infinitely large Reynolds number. It is assumed that the flow instability leads to generation of steady-state large-scale pulsations. The excitation and evolution of the small-scale turbulence is investigated. It is shown that the developed small-scale pulsations are intermittent. The maximal amplitude of the vorticity fluctuations is reached along the vortex filaments. Basing on the obtained solution, the pair correlation function in the limit r0r\to 0 is calculated. It is shown that the function obeys the Kolmogorov law r2/3r^{2/3}.Comment: 18 page

    The global picture of self-similar and not self-similar decay in Burgers Turbulence

    Full text link
    This paper continue earlier investigations on the decay of Burgers turbulence in one dimension from Gaussian random initial conditions of the power-law spectral type E0(k)knE_0(k)\sim|k|^n. Depending on the power nn, different characteristic regions are distinguished. The main focus of this paper is to delineate the regions in wave-number kk and time tt in which self-similarity can (and cannot) be observed, taking into account small-kk and large-kk cutoffs. The evolution of the spectrum can be inferred using physical arguments describing the competition between the initial spectrum and the new frequencies generated by the dynamics. For large wavenumbers, we always have k2k^{-2} region, associated to the shocks. When nn is less than one, the large-scale part of the spectrum is preserved in time and the global evolution is self-similar, so that scaling arguments perfectly predict the behavior in time of the energy and of the integral scale. If nn is larger than two, the spectrum tends for long times to a universal scaling form independent of the initial conditions, with universal behavior k2k^2 at small wavenumbers. In the interval 2<n2<n the leading behaviour is self-similar, independent of nn and with universal behavior k2k^2 at small wavenumber. When 1<n<21<n<2, the spectrum has three scaling regions : first, a kn|k|^n region at very small kk\ms1 with a time-independent constant, second, a k2k^2 region at intermediate wavenumbers, finally, the usual k2k^{-2} region. In the remaining interval, n<3n<-3 the small-kk cutoff dominates, and nn also plays no role. We find also (numerically) the subleading term k2\sim k^2 in the evolution of the spectrum in the interval 3<n<1-3<n<1. High-resolution numerical simulations have been performed confirming both scaling predictions and analytical asymptotic theory.Comment: 14 pages, 19 figure

    Active and passive fields face to face

    Full text link
    The statistical properties of active and passive scalar fields transported by the same turbulent flow are investigated. Four examples of active scalar have been considered: temperature in thermal convection, magnetic potential in two-dimensional magnetohydrodynamics, vorticity in two-dimensional Ekman turbulence and potential temperature in surface flows. In the cases of temperature and vorticity, it is found that the active scalar behavior is akin to that of its co-evolving passive counterpart. The two other cases indicate that this similarity is in fact not generic and differences between passive and active fields can be striking: in two-dimensional magnetohydrodynamics the magnetic potential performs an inverse cascade while the passive scalar cascades toward the small-scales; in surface flows, albeit both perform a direct cascade, the potential temperature and the passive scalar have different scaling laws already at the level of low-order statistical objects. These dramatic differences are rooted in the correlations between the active scalar input and the particle trajectories. The role of such correlations in the issue of universality in active scalar transport and the behavior of dissipative anomalies is addressed.Comment: 36 pages, 20 eps figures, for the published version see http://www.iop.org/EJ/abstract/1367-2630/6/1/07

    Universality of Velocity Gradients in Forced Burgers Turbulence

    Full text link
    It is demonstrated that Burgers turbulence subject to large-scale white-noise-in-time random forcing has a universal power-law tail with exponent -7/2 in the probability density function of negative velocity gradients, as predicted by E, Khanin, Mazel and Sinai (1997, Phys. Rev. Lett. 78, 1904). A particle and shock tracking numerical method gives about five decades of scaling. Using a Lagrangian approach, the -7/2 law is related to the shape of the unstable manifold associated to the global minimizer.Comment: 4 pages, 2 figures, RevTex4, published versio

    Pdf's of Derivatives and Increments for Decaying Burgers Turbulence

    Full text link
    A Lagrangian method is used to show that the power-law with a -7/2 exponent in the negative tail of the pdf of the velocity gradient and of velocity increments, predicted by E, Khanin, Mazel and Sinai (1997 Phys. Rev. Lett. 78, 1904) for forced Burgers turbulence, is also present in the unforced case. The theory is extended to the second-order space derivative whose pdf has power-law tails with exponent -2 at both large positive and negative values and to the time derivatives. Pdf's of space and time derivatives have the same (asymptotic) functional forms. This is interpreted in terms of a "random Taylor hypothesis".Comment: LATEX 8 pages, 3 figures, to appear in Phys. Rev.

    Probability density function of turbulent velocity fluctuation

    Get PDF
    The probability density function (PDF) of velocity fluctuations is studied experimentally for grid turbulence in a systematical manner. At small distances from the grid, where the turbulence is still developing, the PDF is sub-Gaussian. At intermediate distances, where the turbulence is fully developed, the PDF is Gaussian. At large distances, where the turbulence has decayed, the PDF is hyper-Gaussian. The Fourier transforms of the velocity fluctuations always have Gaussian PDFs. At intermediate distances from the grid, the Fourier transforms are statistically independent of each other. This is the necessary and sufficient condition for Gaussianity of the velocity fluctuations. At small and large distances, the Fourier transforms are dependent.Comment: 7 pages, 8 figures in a PS file, to appear in Physical Review
    corecore