197 research outputs found
Low field magnetotransport in strained Si/SiGe cavities
Low field magnetotransport revealing signatures of ballistic transport
effects in strained Si/SiGe cavities is investigated. We fabricated strained
Si/SiGe cavities by confining a high mobility Si/SiGe 2DEG in a bended nanowire
geometry defined by electron-beam lithography and reactive ion etching. The
main features observed in the low temperature magnetoresistance curves are the
presence of a zero-field magnetoresistance peak and of an oscillatory structure
at low fields. By adopting a simple geometrical model we explain the
oscillatory structure in terms of electron magnetic focusing. A detailed
examination of the zero-field peak lineshape clearly shows deviations from the
predictions of ballistic weak localization theory.Comment: Submitted to Physical Review B, 25 pages, 7 figure
Conductance quantization in etched Si/SiGe quantum point contacts
We fabricated strongly confined Schottky-gated quantum point contacts by
etching Si/SiGe heterostructures and observed intriguing conductance
quantization in units of approximately 1e2/h. Non-linear conductance
measurements were performed depleting the quantum point contacts at fixed
mode-energy separation. We report evidences of the formation of a half 1e2/h
plateau, supporting the speculation that adiabatic transmission occurs through
1D modes with complete removal of valley and spin degeneracies.Comment: to appear in Physical Review
The molecularweight dependence of thermoelectric properties of poly (3-Hexylthiophene)
Organic materials have been found to be promising candidates for low-temperature thermoelectric applications. In particular, poly (3-hexylthiophene) (P3HT) has been attracting great interest due to its desirable intrinsic properties, such as excellent solution processability, chemical and thermal stability, and high field-effect mobility. However, its poor electrical conductivity has limited its application as a thermoelectric material. It is therefore important to improve the electrical conductivity of P3HT layers. In this work, we studied how molecular weight (MW) influences the thermoelectric properties of P3HT films. The films were doped with lithium bis(trifluoromethane sulfonyl) imide salt (LiTFSI) and 4-tert butylpyridine (TBP). Various P3HT layers with different MWs ranging from 21 to 94 kDa were investigated. UV-Vis spectroscopy and atomic force microscopy (AFM) analysis were performed to investigate the morphology and structure features of thin films with different MWs. The electrical conductivity initially increased when the MW increased and then decreased at the highest MW, whereas the Seebeck coefficient had a trend of reducing as the MW grew. The maximum thermoelectric power factor (1.87 μW/mK2) was obtained for MW of 77 kDa at 333 K. At this temperature, the electrical conductivity and Seebeck coefficient of this MW were 65.5 S/m and 169 μV/K, respectively
Combined use of x-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells
X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging
Nickel-based structured catalysts for indirect internal reforming of methane
A structured catalyst for the dry reforming of methane (DRM) was investigated as a biogas pre-reformer for indirect internal reforming solid oxide fuel cell (IIR-SOFC). For this purpose, a NiCrAl open-cell foam was chosen as support and Ni-based samarium doped ceria (Ni-SmDC) as catalyst. Ni-SmDC powder is a highly performing catalyst showing a remarkable carbon resistance due to the presence of oxygen vacancies that promote coke gasification by CO2 activation. Ni-SmDC powder was deposited on the metallic support by wash-coating method. The metallic foam, the powder, and the structured catalyst were characterized by several techniques such as: N2 adsorption-desorption technique, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), focused ion beam (FIB), temperature programmed reduction (H2-TPR), and Raman spectroscopy. Catalytic tests were performed on structured catalysts to evaluate activity, selectivity, and stability at SOFC operating conditions
Early stage of CVD graphene synthesis on Ge(001) substrate
In this work we shed light on the early stage of the chemical vapor
deposition of graphene on Ge(001) surfaces. By a combined use of microRaman and
x-ray photoelectron spectroscopies, and scanning tunneling microscopy and
spectroscopy, we were able to individuate a carbon precursor phase to graphene
nucleation which coexists with small graphene domains. This precursor phase is
made of C aggregates with different size, shape and local ordering which are
not fully sp2 hybridized. In some atomic size regions these aggregates show a
linear arrangement of atoms as well as the first signature of the hexagonal
structure of graphene. The carbon precursor phase evolves in graphene domains
through an ordering process, associated to a re-arrangement of the Ge surface
morphology. This surface structuring represents the embryo stage of the
hills-and-valleys faceting featured by the Ge(001) surface for longer
deposition times, when the graphene domains coalesce to form a single layer
graphene film
On the Dependency of the Electromechanical Response of Rotary MEMS/NEMS on Their Embedded Flexure Hinges’ Geometry
This paper investigates how the electromechanical response of MEMS/NEMS devices changes when the geometrical characteristics of their embedded flexural hinges are modified. The research is dedicated particularly to MEMS/NEMS devices which are actuated by means of rotary comb-drives. The electromechanical behavior of a chosen rotary device is assessed by studying the rotation of the end effector, the motion of the comb-drive mobile fingers, the actuator’s maximum operating voltage, and the stress sustained by the flexure when the flexure’s shape, length, and width change. The results are compared with the behavior of a standard revolute joint. Outcomes demonstrate that a linear flexible beam cannot perfectly replace the revolute joint as it induces a translation that strongly facilitates the pull-in phenomenon and significantly increases the risk of ruptures of the comb-drives. On the other hand, results show how curved beams provide a motion that better resembles the revolute motion, preserving the structural integrity of the device and avoiding the pull-in phenomenon. Finally, results also show that the end effector motion approaches most precisely the revolute motion when a fine tuning of the beam’s length and width is performed
WC-base cemented carbides with partial and total substitution of Co as binder: Evaluation of mechanical response by means of uniaxial compression of micropillars
The influence of the chemical nature of the metallic binder on the plastic deformation of cemented carbides was studied. Three different cemented carbide grades - WC-Co, WC-CoNi and WC-NiMo - with similar microstructural characteristics (binder content and carbide grain size) were investigated. Mechanical response was evaluated by means of uniaxial compression of micropillars, and tests were carried out in-situ in a FESEM with a nanoindenter equipped with a flat-diamond punch. After uniaxial compression, inspection of deformation phenomena was done at both surface and bulk of micropillars through scanning and transmission electron microscopy, respectively. It is found that yielding phenomena and strain hardening increase as Co is totally substituted by a NiMo alloy, while contrary effect results from partial replacement of Co with Ni. Relative differences are directly linked to intrinsic ductility of the metallic phase and operative plastic deformation mechanisms. Moreover, for the three materials studied, stress-strain responses show pronounced yielding events related to glide at WC/WC interfaces. Although they are discerned at different stress levels, estimated values of sliding resistance of WC/WC boundaries are found to be alike for the three grades studied.Peer ReviewedPostprint (author's final draft
- …