45 research outputs found

    Lyso-GM2 Ganglioside: A Possible Biomarker of Tay-Sachs Disease and Sandhoff Disease

    Get PDF
    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease

    The world trade center 9/11 disaster and progressive collapse of tall buildings

    Get PDF
    The collapse of the World Trade Center buildings on September 11, 2001 posed questions on the stability of tall buildings in fire. Understanding the collapse of the WTC Towers offers the opportunity to learn useful engineering lessons in order to improve the design of future tall buildings against fire induced collapse. This paper extends previous research on the modelling of the collapse of the WTC Towers on September 11, 2001 using a newly developed ‘‘structures in fire’’ simulation capability in the open source software framework OpenSees. The simulations carried out are validated by comparisons with previous work and against the findings from the NIST investigation, albeit not in the forensic sense. The column ‘‘pull in’’ that triggers the instability of the structure and leads to collapse is explained. The collapse mechanisms of generic composite tall buildings are also examined. This is achieved through carrying out a detailed parametric study varying the relative stiffness of the column and the floors. The two main mechanisms identified in previous research (weak and strong floor) are reproduced and criteria are established on their occurrence. The analyses performed revealed that the collapse mechanism type depended on the bending stiffness ratio and the number of floors subjected to fire and that the most probable type of failure is the strong floor collapse. The knowledge of these mechanisms is of practical use if stakeholders wish to extend the tenability of a tall building structure in a major fire.Professor Jose Torero and the Open-Sees team at PEER, UC Berkele

    Aussteifung von Tragwerken

    No full text
    corecore