815 research outputs found
Kinetics and moving species during Co2Si formation by rapid thermal annealing
We have investigated the growth kinetics and identified the moving species during Co2Si formation by rapid thermal annealing (RTA). For the kinetics study, samples which consisted of a thin Co film on an evaporated Si substrate were used. To study which species moves, samples imbedded with two very thin Ta markers were employed. Upon RTA, only one silicide phase, Co2Si, was observed to grow before all Co was consumed. The square root of time dependence and the activation energy of about 2.1±0.2 eV were observed during the Co2Si formation up to 680 °C. The marker study indicated that Co is the dominant mobile species during Co2Si formation by RTA. We conclude that Co2Si grows by the same mechanisms during RTA and conventional thermal annealing
A TQFT associated to the LMO invariant of three-dimensional manifolds
We construct a Topological Quantum Field Theory (in the sense of Atiyah)
associated to the universal finite-type invariant of 3-dimensional manifolds,
as a functor from the category of 3-dimensional manifolds with parametrized
boundary, satisfying some additional conditions, to an algebraic-combinatorial
category. It is built together with its truncations with respect to a natural
grading, and we prove that these TQFTs are non-degenerate and anomaly-free. The
TQFT(s) induce(s) a (series of) representation(s) of a subgroup of
the Mapping Class Group that contains the Torelli group. The N=1 truncation
produces a TQFT for the Casson-Walker-Lescop invariant.Comment: 28 pages, 13 postscript figures. Version 2 (Section 1 has been
considerably shorten, and section 3 has been slightly shorten, since they
will constitute a separate paper. Section 4, which contained only announce of
results, has been suprimated; it will appear in detail elsewhere.
Consequently some statements have been re-numbered. No mathematical changes
have been made.
Quantum quenches and driven dynamics in a single-molecule device
The nonequilibrium dynamics of molecular devices is studied in the framework
of a generic model for single-molecule transistors: a resonant level coupled by
displacement to a single vibrational mode. In the limit of a broad level and in
the vicinity of the resonance, the model can be controllably reduced to a form
quadratic in bosonic operators, which in turn is exactly solvable. The response
of the system to a broad class of sudden quenches and ac drives is thus
computed in a nonperturbative manner, providing an asymptotically exact
solution in the limit of weak electron-phonon coupling. From the analytic
solution we are able to (1) explicitly show that the system thermalizes
following a local quantum quench, (2) analyze in detail the time scales
involved, (3) show that the relaxation time in response to a quantum quench
depends on the observable in question, and (4) reveal how the amplitude of
long-time oscillations evolves as the frequency of an ac drive is tuned across
the resonance frequency. Explicit analytical expressions are given for all
physical quantities and all nonequilibrium scenarios under study.Comment: 23 pages, 13 figure
Recommended from our members
STAT signaling in the pathogenesis and treatment of myeloid malignancies
STAT transcription factors play a critical role in mediating the effects of cytokines on myeloid cells. As STAT target genes control key processes such as survival, proliferation and self-renewal, it is not surprising that constitutive activation of STATs, particularly STAT3 and STAT5, are common events in many myeloid tumors. STATs are activated both by mutant tyrosine kinases as well as other pathogenic events, and continued activation of STATs is common in the setting of resistance to kinase inhibitors. Thus, the targeting of STATs, alone or in combination with other drugs, will likely have increasing importance for cancer therapy
Attosecond time-resolved photoelectron holography
Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography—all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process. Adding a weak second harmonic (SH) field to a strong fundamental laser field enables us to reconstruct the ionization times of photoelectrons that play a role in the formation of a photoelectron hologram with attosecond precision. We decouple the contributions of the two arms of the hologram and resolve the subtle differences in their ionization times, separated by only a few tens of attoseconds
Standoff Detection of Solid Traces by Single-Beam Nonlinear Raman Spectroscopy Using Shaped Femtosecond Pulses
We demonstrate a single-beam, standoff (>10m) coherent anti-Stokes Raman
scattering spectroscopy (CARS) of various materials, including trace amounts of
explosives and nitrate samples, under ambient light conditions. The multiplex
measurement of characteristic molecular vibrations with <20cm-1 spectral
resolution is carried out using a single broadband (>550cm-1) phase-shaped
femtosecond laser pulse. We exploit the strong nonresonant background signal
for amplification of the weak backscattered resonant CARS signal by using a
homodyne detection scheme. This facilitates a simple, highly sensitive
single-beam spectroscopic technique, with a potential for hazardous materials
standoff detection applications
- …