417 research outputs found

    Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish.

    Get PDF
    As global change alters multiple environmental conditions, predicting species' responses can be challenging without understanding how each environmental factor influences organismal performance. Approaches quantifying mechanistic relationships can greatly complement correlative field data, strengthening our abilities to forecast global change impacts. Substantial salinity increases are projected in the San Francisco Estuary, California, due to anthropogenic water diversion and climatic changes, where the critically endangered delta smelt (Hypomesus transpacificus) largely occurs in a low-salinity zone (LSZ), despite their ability to tolerate a much broader salinity range. In this study, we combined molecular and organismal measures to quantify the physiological mechanisms and sublethal responses involved in coping with salinity changes. Delta smelt utilize a suite of conserved molecular mechanisms to rapidly adjust their osmoregulatory physiology in response to salinity changes in estuarine environments. However, these responses can be energetically expensive, and delta smelt body condition was reduced at high salinities. Thus, acclimating to salinities outside the LSZ could impose energetic costs that constrain delta smelt's ability to exploit these habitats. By integrating data across biological levels, we provide key insight into the mechanistic relationships contributing to phenotypic plasticity and distribution limitations and advance the understanding of the molecular osmoregulatory responses in nonmodel estuarine fishes

    Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species.

    Get PDF
    Turbidity can influence trophic levels by altering species composition and can potentially affect fish feeding strategies and predator-prey interactions. The estuarine turbidity maximum, described as an area of increased suspended particles, phytoplankton and zooplankton, generally represents a zone with higher turbidity and enhanced food sources important for successful feeding and growth in many fish species. The delta smelt (Hypomesus transpacificus) is an endangered, pelagic fish species endemic to the San Francisco Estuary and Sacramento-San Joaquin River Delta, USA, where it is associated with turbid waters. Turbidity is known to play an important role for the completion of the species' life cycle; however, turbidity ranges in the Delta are broad, and specific requirements for this fish species are still unknown. To evaluate turbidity requirements for early life stages, late-larval delta smelt were maintained at environmentally relevant turbidity levels ranging from 5 to 250 nephelometric turbidity units (NTU) for 24 h, after which a combination of physiological endpoints (molecular biomarkers and cortisol), behavioural indices (feeding) and whole-organism measures (survival) were determined. All endpoints delivered consistent results and identified turbidities between 25 and 80 NTU as preferential. Delta smelt survival rates were highest between 12 and 80 NTU and feeding rates were highest between 25 and 80 NTU. Cortisol levels indicated minimal stress between 35 and 80 NTU and were elevated at low turbidities (5, 12 and 25 NTU). Expression of stress-related genes indicated significant responses for gst, hsp70 and glut2 in high turbidities (250 NTU), and principal component analysis on all measured genes revealed a clustering of 25, 35, 50 and 80 NTU separating the medium-turbidity treatments from low- and high-turbidity treatments. Taken together, these data demonstrate that turbidity levels that are either too low or too high affect delta smelt physiological performance, causing significant effects on overall stress, food intake and mortality. They also highlight the need for turbidity to be considered in habitat and water management decisions

    Efficacy of a sensory deterrent and pipe modifications in decreasing entrainment of juvenile green sturgeon (Acipenser medirostris) at unscreened water diversions.

    Get PDF
    Water projects designed to extract fresh water for local urban, industrial and agricultural use throughout rivers and estuaries worldwide have contributed to the fragmentation and degradation of suitable habitat for native fishes. The number of water diversions located throughout the Sacramento-San Joaquin watershed in California's Central Valley exceeds 3300, and the majority of these are unscreened. Many anadromous fish species are susceptible to entrainment into these diversions, potentially impacting population numbers. In the laboratory, juvenile green sturgeon (Acipenser medirostris) have been shown to have high entrainment rates into unscreened diversions compared with those of other native California fish species, which may act as a significant source of mortality for this already-threatened species. Therefore, we tested the efficacy of a sensory deterrent (strobe light) and two structural pipe modifications (terminal pipe plate and upturned pipe configuration) in decreasing the entrainment of juvenile green sturgeon (mean mass ± SEM = 162.9 ± 4.0 g; mean fork length = 39.4 ± 0.3 cm) in a large (>500 kl) outdoor flume fitted with a water-diversion pipe 0.46 m in diameter. While the presence of the strobe light did not affect fish entrainment rates, the terminal pipe plate and upturned pipe modifications significantly decreased the proportion of fish entrained out of the total number tested relative to control conditions (0.13 ± 0.02 and 0.03 ± 0.02 vs. 0.44 ± 0.04, respectively). These data suggest that sensory deterrents using visual stimuli are not an effective means to reduce diversion pipe interactions for green sturgeon, but that structural alterations to diversions can successfully reduce entrainment for this species. Our results are informative for the development of effective management strategies to mitigate the impacts of water diversions on sturgeon populations and suggest that effective restoration strategies that balance agricultural needs with conservation programmes are possible

    Electroactive Polyhydroquinone Coatings for Marine Fouling Prevention—A Rejected Dynamic pH Hypothesis and a Deceiving Artifact in Electrochemical Antifouling Testing

    Get PDF
    Nanometer-thin coatings of polyhydroquinone (PHQ), which release and absorb protons upon oxidation and reduction, respectively, were tested for electrochemically induced anti-biofouling activity under the hypothesis that a dynamic pH environment would discourage fouling. Antifouling tests in artificial seawater using the marine, biofilm-forming bacterium Vibrio alginolyticus proved the coatings to be ineffective in fouling prevention but revealed a deceiving artifact from the reactive species generated at the counter electrode (CE), even for electrochemical bias potentials as low as |400| mV versus Ag|AgCl. These findings provide valuable information on the preparation of nanothin PHQ coatings and their electrochemical behavior in artificial seawater. The results further demonstrate that it is critical to isolate the CE in electrochemical anti-biofouling testing

    Unscreened water-diversion pipes pose an entrainment risk to the threatened green sturgeon, Acipenser medirostris.

    Get PDF
    Over 3,300 unscreened agricultural water diversion pipes line the levees and riverbanks of the Sacramento River (California) watershed, where the threatened Southern Distinct Population Segment of green sturgeon, Acipenser medirostris, spawn. The number of sturgeon drawn into (entrained) and killed by these pipes is greatly unknown. We examined avoidance behaviors and entrainment susceptibility of juvenile green sturgeon (35±0.6 cm mean fork length) to entrainment in a large (>500-kl) outdoor flume with a 0.46-m-diameter water-diversion pipe. Fish entrainment was generally high (range: 26-61%), likely due to a lack of avoidance behavior prior to entering inescapable inflow conditions. We estimated that up to 52% of green sturgeon could be entrained after passing within 1.5 m of an active water-diversion pipe three times. These data suggest that green sturgeon are vulnerable to unscreened water-diversion pipes, and that additional research is needed to determine the potential impacts of entrainment mortality on declining sturgeon populations. Data under various hydraulic conditions also suggest that entrainment-related mortality could be decreased by extracting water at lower diversion rates over longer periods of time, balancing agricultural needs with green sturgeon conservation

    The Power of Alumni Networks - Success of Startup Companies Correlates With Online Social Network Structure of Its Founders

    Get PDF
    In this paper we analyze the success of startups in Germany by looking at the social network structure of their founders on the German-language business-networking site XING. We address two related research questions. First we examine university-wide networks, constructing alumni networks of 12 German universities, with the goal of identifying the most successful founder networks among the 12 universities. Second, we also look at individual actor network structure, to find the social network attributes of the most successful founders. We automatically collected the publicly accessible portion of XING, filtering people by attributes indicative of their university, and roles as founders, entrepreneurs, and CEOs. We identified 51,976 alumni, out of which 14,854 have entrepreneurship attributes. We also manually evaluated the financial success of a subsample of 80 entrepreneurs for each university. We found that universities, which are more central in the German university network, provide a better environment for students to found more and more successful startups. University networks whose alumni have a stronger “old-boys-network”, i.e. a larger share of their links with other alumni of their alma mater, are more successful as founders of startups. On the individual level the same holds true: the more links founders have with alumni of their university, the more successful their startup is. Finally, the absolute amount of networking matters, i.e. the more links entrepreneurs have, and the higher their betweenness in the online network of university alumni, the more successful they are
    • …
    corecore