350 research outputs found

    Short-term effects of amelogenin gene splice products A+4 and A-4 implanted in the exposed rat molar pulp

    Get PDF
    In order to study the short-time effects of two bioactive low-molecular amelogenins A+4 and A-4, half-moon cavities were prepared in the mesial aspect of the first maxillary molars, and after pulp exposure, agarose beads alone (controls) or beads soaked in A+4 or A-4 (experimental) were implanted into the pulp. After 1, 3 or 7 days, the rats were killed and the teeth studied by immunohistochemistry. Cell proliferation was studied by PCNA labeling, positive at 3 days, but decreasing at day 7 for A+4, whilst constantly high between 3 and 7 days for A-4. The differentiation toward the osteo/odontoblast lineage shown by RP59 labeling was more apparent for A-4 compared with A+4. Osteopontin-positive cells were alike at days 3 and 7 for A-4. In contrast, for A+4, the weak labeling detected at day 3 became stronger at day 7. Dentin sialoprotein (DSP), an in vivo odontoblast marker, was not detectable until day 7 where a few cells became DSP positive after A-4 stimulation, but not for A+4. These results suggest that A +/- 4 promote the proliferation of some pulp cells. Some of them further differentiate into osteoblast-like progenitors, the effects being more precocious for A-4 (day 3) compared with A+4 (day 7). The present data suggest that A +/- 4 promote early recruitment of osteogenic progenitors, and evidence functional differences between A+4 and A-4

    The Classic: Bone Morphogenetic Protein

    Get PDF
    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is © 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392–1406

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    Breast cancer derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment

    Get PDF
    Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (Arg-1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular L-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor derived GM-CSF as the primary regulator of myeloid cell Arg-1 expression and local immune suppression through a gene knockout screen of breast tumor cell-produced factors. The induction of myeloid cell Arg-1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3, p38 MAPK, and acid signaling through cAMP were required to activate myeloid cell Arg-1 expression in a STAT6 independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host anti-tumor immunity, driving a significant accumulation of Arg-1 expressing myeloid cells compared to lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T-cell therapy and immune checkpoint blockade. Taken together, breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell Arg-1 expression and can be targeted to enhance breast cancer immunotherapy

    Specific Binding and Mineralization of Calcified Surfaces by Small Peptides

    Get PDF
    Several small (<25aa) peptides have been designed based on the sequence of the dentin phosphoprotein, one of the major noncollagenous proteins thought to be involved in the mineralization of the dentin extracellular matrix during tooth development. These peptides, consisting of multiple repeats of the tripeptide aspartate-serine-serine (DSS), bind with high affinity to calcium phosphate compounds and, when immobilized, can recruit calcium phosphate to peptide-derivatized polystyrene beads or to demineralized human dentin surfaces. The affinity of binding to hydroxyapatite surfaces increases with the number of (DSS)n repeats, and though similar repeated sequences—(NTT)n, (DTT)n, (ETT)n, (NSS)n, (ESS)n, (DAA)n, (ASS)n, and (NAA)n—also showed HA binding activity, it was generally not at the same level as the natural sequence. Binding of the (DSS)n peptides to sectioned human teeth was shown to be tissue-specific, with high levels of binding to the mantle dentin, lower levels of binding to the circumpulpal dentin, and little or no binding to healthy enamel. Phosphorylation of the serines of these peptides was found to affect the avidity, but not the affinity, of binding. The potential utility of these peptides in the detection of carious lesions, the delivery of therapeutic compounds to mineralized tissues, and the modulation of remineralization is discussed

    Collecting duct carcinoma of the kidney: an immunohistochemical study of 11 cases

    Get PDF
    BACKGROUND: Collecting duct carcinoma (CDC) is a rare but very aggressive variant of kidney carcinoma that arises from the epithelium of Bellini's ducts, in the distal portion of the nephron. In order to gain an insight into the biology of this tumor we evaluated the expression of five genes involved in the development of renal cancer (FEZ1/LZTS1, FHIT, TP53, P27(kip1), and BCL2). METHODS: We studied eleven patients who underwent radical nephrectomy for primary CDC. All patients had an adequate clinical follow-up and none of them received any systemic therapy before surgery. The expression of the five markers for tumor initiation and/or progression were assessed by immunohistochemistry and correlated to the clinicopathological parameters, and survival by univariate analysis. RESULTS: Results showed that Fez1 protein expression was undetectable or substantially reduced in 7 of the 11 (64%) cases. Fhit protein was absent in three cases (27%). The overexpression of p53 protein was predominantly nuclear and detected in 4 of 11 cases (36%). Immunostaining for p27 was absent in 5 of 11 cases (45.5%). Five of the six remaining cases (90%) showed exclusively cytoplasmic protein expression, where, in the last case, p27 protein was detected in both nucleus and cytoplasm. Bcl2 expression with 100% of the tumor cells positive was observed in 4 of 11 (36%) cases. Statistical analysis showed a statistical trend (P = 0.06) between loss and reduction of Fez1 and presence of lymph node metastases. CONCLUSIONS: These findings suggest that Fez1 may represent not only a molecular diagnostic marker but also a prognostic marker in CDC

    Glucocorticoids in T cell apoptosis and function

    Get PDF
    Glucocorticoids (GCs) are a class of steroid hormones which regulate a variety of essential biological functions. The profound anti-inflammatory and immunosuppressive activity of synthetic GCs, combined with their power to induce lymphocyte apoptosis place them among the most commonly prescribed drugs worldwide. Endogenous GCs also exert a wide range of immunomodulatory activities, including the control of T cell homeostasis. Most, if not all of these effects are mediated through the glucocorticoid receptor, a member of the nuclear receptor superfamily. However, the signaling pathways and their cell type specificity remain poorly defined. In this review, we summarize our present knowledge on GC action, the mechanisms employed to induce apoptosis and the currently discussed models of how they may participate in thymocyte development. Although our knowledge in this field has substantially increased during recent years, we are still far from a comprehensive picture of the role that GCs play in T lymphocytes

    NIK Stabilization in Osteoclasts Results in Osteoporosis and Enhanced Inflammatory Osteolysis

    Get PDF
    Maintenance of healthy bone requires the balanced activities of osteoclasts (OCs), which resorb bone, and osteoblasts, which build bone. Disproportionate action of OCs is responsible for the bone loss associated with postmenopausal osteoporosis and rheumatoid arthritis. NF-κB inducing kinase (NIK) controls activation of the alternative NF-κB pathway, a critical pathway for OC differentiation. Under basal conditions, TRAF3-mediated NIK degradation prevents downstream signaling, and disruption of the NIK:TRAF3 interaction stabilizes NIK leading to constitutive activation of the alternative NF-κB pathway.Using transgenic mice with OC-lineage expression of NIK lacking its TRAF3 binding domain (NT3), we now find that alternative NF-κB activation enhances not only OC differentiation but also OC function. Activating NT3 with either lysozyme M Cre or cathepsinK Cre causes high turnover osteoporosis with increased activity of OCs and osteoblasts. In vitro, NT3-expressing precursors form OCs more quickly and at lower doses of RANKL. When cultured on bone, they exhibit larger actin rings and increased resorptive activity. OC-specific NT3 transgenic mice also have an exaggerated osteolytic response to the serum transfer model of arthritis.Constitutive activation of NIK drives enhanced osteoclastogenesis and bone resorption, both in basal conditions and in response to inflammatory stimuli

    A Case of Unerupted Lower Primary Second Molar Associated with Compound Odontoma

    Get PDF
    Odontoma is the most common type of benign odontogenic tumor, and often causes disturbances in the eruption of its associated tooth. Odontomas usually occur in the permanent dentition, and rarely occur solely in the primary dentition. This case report documents a six-year-old-child with a compound odontoma located in the mandible, which caused the impaction of the primary second molar
    corecore