33 research outputs found

    Coherence scale of the Kondo lattice

    Get PDF
    It is shown that the large-N approach yields two energy scales for the Kondo lattice model. The single-impurity Kondo temperature, TKT_K, signals the onset of local singlet formation, while Fermi liquid coherence sets in only below a lower scale, TT^{\star}. At low conduction electron density ncn_c ("exhaustion" limit), the ratio T/TKT^{\star}/T_K is much smaller than unity, and is shown to depend only on ncn_c and not on the Kondo coupling. The physical meaning of these two scales is demonstrated by computing several quantities as a function of ncn_c and temperature.Comment: 4 pages, 4 eps figures. Minor changes. To appear in Phys. Rev. Let

    Superconducting Instability in the Periodic Anderson Model

    Full text link
    Employing a quantum Monte Carlo simulation we find a pairing instability in the normal state of the infinite dimensional periodic Anderson model. Superconductivity arises from a normal state in which the screening is protracted and which is clearly not a Fermi liquid. The phase diagram is reentrant reflecting competition between superconductivity and Fermi liquid formation. The estimated superconducting order parameter is even, but has nodes as a function of frequency. This opens the possibility of a temporal node and an effective order parameter composed of charge pairs and spin excitations.Comment: one postscript file, 6 pages including 6 figures. To appear in Phil. Mag.

    Low-temperature coherence in the periodic Anderson model: Predictions for photoemission of heavy Fermions

    Full text link
    We present numerically exact predictions of the periodic and single-impurity Anderson models to address photoemission experiments on heavy Fermion systems. Unlike the single impurity model the lattice model is able to account for the enhanced intensity, dispersion, and apparent weak temperature dependence of the Kondo resonant peak seen in recent controversial photoemission experiments. We present a consistent interpretation of these results as a crossover from the impurity regime to an effective Hubbard model regime described by Nozieres.Comment: 4 pages, 3 figure

    "Exhaustion" Physics in the Periodic Anderson Model using Iterated Perturbation Theory

    Get PDF
    We discuss the "exhaustion" problem in the context of the Periodic Anderson Model using Iterated Perturbation Theory(IPT) within the Dynamical Mean Field Theory. We find that, despite its limitations, IPT captures the exhaustion physics, which manifests itself as a dramatic, strongly energy dependent suppression of the effective Anderson impurity problem. As a consequence, low energy scales in the lattice case are strongly suppressed compared to the "Kondo scale" in the single-impurity picture. The IPT results are in qualitative agreement with recent Quantum Monte Carlo results for the same problem.Comment: 13 preprint pages including 1 table and 4 eps figures, replaced by revised version, accepted for publication in Europhysics Letters, added references and conten

    Dynamic correlations in doped 1D Kondo insulator: Finite-T DMRG study

    Full text link
    The finite-T DMRG method is applied to the one-dimensional Kondo lattice model to calculate dynamic correlation functions. Dynamic spin and charge correlations, S_f(omega), S_c(omega), and N_c(omega), and quasiparticle density of states rho(omega) are calculated in the paramagnetic metallic phase for various temperatures and hole densities. Near half filling, it is shown that a pseudogap grows in these dynamic correlation functions below the crossover temperature characterized by the spin gap at half filling. A sharp peak at omega=0 evolves at low temperatures in S_f(omega) and N_c(omega). This may be an evidence of the formation of the collective excitations, and this confirms that the metallic phase is a Tomonaga-Luttinger liquid in the low temperature limit.Comment: 5 pages, 6 Postscript figures, REVTe

    The low-energy scale of the periodic Anderson model

    Full text link
    Wilson's Numerical Renormalization Group method is used to study the paramagnetic ground state of the periodic Anderson model within the dynamical mean-field approach. For the particle-hole symmetric model, which is a Kondo insulator, we find that the lattice Kondo scale T_0 is strongly enhanced over the impurity scale T_K; T_0/T_K ~ exp(1/3I), where I is the Schrieffer-Wolff exchange coupling. In the metallic regime, where the conduction band filling is reduced from one, we find characteristic signatures of Nozi\`eres exhaustion scenario, including a strongly reduced lattice Kondo scale, a significant suppression of the states available to screen the f-electron moment, and a Kondo resonance with a strongly enhanced height. However, in contrast to the quantitative predictions of Nozi\`eres, we find that the T_0 ~ T_K with a coefficient which depends strongly on conduction band filling.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    Two energy scales and slow crossover in YbAl3

    Full text link
    Experimental results for the susceptibility, specific heat, 4f occupation number, Hall effect and magnetoresistance for single crystals of YbAl3_{3} show that, in addition to the Kondo energy scale kBTKk_{B}T_{K} % \sim 670K, there is a low temperature scale Tcoh<50T_{coh}<50K for the onset of coherence. Furthermore the crossover from the low temperature Fermi liquid regime to the high temperature local moment regime is slower than predicted by the Anderson impurity model. These effects may reflect the behavior of the Anderson Lattice in the limit of low conduction electron density.Comment: Ten pages, including three figure

    Quantum critical point in a periodic Anderson model

    Full text link
    We investigate the symmetric Periodic Anderson Model (PAM) on a three-dimensional cubic lattice with nearest-neighbor hopping and hybridization matrix elements. Using Gutzwiller's variational method and the Hubbard-III approximation (which corresponds to the exact solution of an appropriate Falicov-Kimball model in infinite dimensions) we demonstrate the existence of a quantum critical point at zero temperature. Below a critical value VcV_c of the hybridization (or above a critical interaction UcU_c) the system is an {\em insulator} in Gutzwiller's and a {\em semi-metal} in Hubbard's approach, whereas above VcV_c (below UcU_c) it behaves like a metal in both approximations. These predictions are compared with the density of states of the dd- and ff-bands calculated from Quantum Monte Carlo and NRG calculations. Our conclusion is that the half-filled symmetric PAM contains a {\em metal-semimetal transition}, not a metal-insulator transition as has been suggested previously.Comment: ReVteX, 10 pages, 2 EPS figures. Minor corrections made in the text and in the figure captions from the first version. More references added. Accepted for publication in Physical Review
    corecore