413 research outputs found
Electron localization effects on the low-temperature high-field magnetoresistivity of three-dimensional amorphous superconductors
he electrical resistivity ρ of three-dimensional amorphous superconducting films a-Mo3Si and a-Nb3Ge is measured in magnetic fields μ0H up to 30 T. At low temperatures and at magnetic fields above the upper critical field Hc2, ρ is temperature independent and decreases as a function of magnetic field. This field dependence is consistent with localization theory in the high-field limit [μ0H≫ħ/(4eLφ2), where Lφ is the phase-coherence length]. Above the superconducting transition temperature Tc, the temperature dependence of the conductivity is consistent with inelastic scattering processes which are destructive to the phase coherence for electron localization, thereby allowing estimates for Lφ(T). The Hall effect data on a-Mo3Si, in conjunction with the resistivity data, allow the determination of the carrier concentration and mean free path. The upper critical field is comparable to (in a-Mo3Si) and significantly larger than (in a-Nb3Ge) the Clogston-Chandrasekhar paramagnetic limit. This phenomenon is discussed in the context of electron localization
Infrared studies of a La_(0.67)Ca_(0.33)MnO_3 single crystal: Optical magnetoconductivity in a half-metallic ferromagnet
The infrared reflectivity of a La_(0.67)Ca_(0.33)MnO_3 single crystal is studied over a broad range of temperatures (78–340 K), magnetic fields (0–16 T), and wave numbers (20–9000cm^(-1)). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000cm-1 in the ferromagnetic state below the Curie temperature T_C=307K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near T_C
Infrared Studies of a La_{0.67}Ca_{0.33}MnO_3 Single Crystal: Optical Magnetoconductivity in a Half-Metallic Ferromagnet
The infrared reflectivity of a single crystal
is studied over a broad range of temperatures (78-340 K), magnetic fields (0-16
T), and wavenumbers (20-9000 cm). The optical conductivity gradually
changes from a Drude-like behavior to a broad peak feature near 5000 cm
in the ferromagnetic state below the Curie temperature . Various
features of the optical conductivity bear striking resemblance to recent
theoretical predictions based on the interplay between the double exchange
interaction and the Jahn-Teller electron-phonon coupling. A large optical
magnetoconductivity is observed near .Comment: 4 pages, 4 figures, Latex, PostScript; The 7th Joint MMM-Intermag
Conference,San Francisco, January 6-9, 1998; The Int. Conf. on Strongly
Correlated Electron Systems, Paris, July 15-18,199
DEVELOPING THE METHODS OF FOOD PRESERVATIVES EXTRACTION FROM COMPLEX MATRICES FOR BIOASSAY PURPOSE
The presence of food additives in food products may be associated with the risk of their toxic effects on human body. Therefore, the study of approaches to testing their safety seems to be a particularly urgent task. The aim of this study was to determine the conditions for extracting food preservatives from the samples of preserved pureed vegetables for further bioassay of the extract obtained in the Allium test. Onion roots were used as a test object in this method. Two extraction methods of benzoic and sorbic acids added to pureed vegetables have been developed. Distilled water and acetone were used as extracting solutions. The extraction efficiency was evaluated on Shimadzu Prominence LC-20 liquid chromatograph (Japan) in the ultraviolet range, wavelength 235 nm (benzoic acid), 285 nm (sorbic acid). According to the results of studies using both water and acetone as extractants, the degree of preservatives extraction was approximately the same and quite high. In the quantitative calculation of the preservatives content in pureed vegetables, the value of the correction factor was 0.8. However, due to certain production characteristics of this product, i. e. the stage of cauliflower homogenization, obtaining an extract with acetone seems to be more acceptable for the Allium test conditions.The presence of food additives in food products may be associated with the risk of their toxic effects on human body. Therefore, the study of approaches to testing their safety seems to be a particularly urgent task. The aim of this study was to determine the conditions for extracting food preservatives from the samples of preserved pureed vegetables for further bioassay of the extract obtained in the Allium test. Onion roots were used as a test object in this method. Two extraction methods of benzoic and sorbic acids added to pureed vegetables have been developed. Distilled water and acetone were used as extracting solutions. The extraction efficiency was evaluated on Shimadzu Prominence LC-20 liquid chromatograph (Japan) in the ultraviolet range, wavelength 235 nm (benzoic acid), 285 nm (sorbic acid). According to the results of studies using both water and acetone as extractants, the degree of preservatives extraction was approximately the same and quite high. In the quantitative calculation of the preservatives content in pureed vegetables, the value of the correction factor was 0.8. However, due to certain production characteristics of this product, i. e. the stage of cauliflower homogenization, obtaining an extract with acetone seems to be more acceptable for the Allium test conditions
The phenomenon of the home: Metaphysics of the innermost (as illustrated by the modern Russian culture)
The relevance of the problem under study is based on the influence of the expanding globalization processes that affect the view of life of a modern man: the internal balance is lost due to feeling of chaos, rhythm of life and constant changes. In these conditions there is a tendency to de-humanize the living environment, depersonalization of living space and desacralization of human dwelling which leads to re-thinking of the Home that ensures human existence in the world. The purpose of the article is to state the necessity of new understanding of the Home as the phenomenon of culture which would confront the absolute priority of the rational, pragmatic and utilitarian through the notion of “the innermost”, through studying the transformation of the innermost within the historical context and through revealing the dialectics of the innermost and the explicit in living space of the modern culture. The lead method for studying this problem is the interdisciplinary approach that provides the possibility of comprehensive consideration of the results of philosophical, cultural, architectural and other studies. The article reveals the essence and the main philosophical-cultural characteristics of the Home and the essence of the innermost as a special super-value, specifies the traditional image of the innermost in living space related to the Home as the centre of existence and reveals the attributes of transformation of the innermost in the Home resulting from the processes which are characteristic of the modern age. The materials of the article can be useful for developing the scientific-methodological support of general and special courses, for conducting lessons in philosophical-cultural disciplines and for usage for designing and modeling the living environment. © 2016 Shupletsova et al
Steps in the Negative-Differential-Conductivity Regime of a Superconductor
Current-voltage characteristics were measured in the mixed state of
Y1Ba2Cu3O(7-delta) superconducting films in the regime where flux flow becomes
unstable and the differential conductivity dj/dE becomes negative. Under
conditions where its negative slope is steep, the j(E) curve develops a
pronounced staircase like pattern. We attribute the steps in j(E) to the
formation of a dynamical phase consisting of the succesive nucleation of
quantized distortions in the local vortex velocity and flux distribution within
the moving flux matter.Comment: 5 pages, 3 figure
Possibility of the new type phase transition
The scalar field theory and the scalar electrodynamics quantized in the flat
gap are considered. The dynamical effects arising due to the boundary presence
with two types of boundary conditions (BC) satisfied by scalar fields are
studied. It is shown that while the Neumann BC lead to the usual scalar field
mass generation, the Dirichlet BC give rise to the dynamical mechanism of
spontaneous symmetry breaking. Due to the later, there arises the possibility
of the new type phase transition from the normal to spontaneously broken phase.
The decreasing in the characteristic size of the quantization region (the gap
size here) and increasing in the temperature compete with each other, tending
to transport the system in the spontaneously broken and in the normal phase,
respectively. The system evolves with a combined parameter, simultaneously
reflecting the change in temperature and in the size. As a result, at the
critical value of this parameter there occurs the phase transition from the
normal phase to the spontaneously broken one. In particular, the usual massless
scalar electrodynamics transforms to the Higgs model
- …