14,957 research outputs found
Energy and Momentum of a Class of Rotating Gravitational Waves
We calculate energy and momentum for a class of cylindrical rotating
gravitational waves using Einstein and Papapetrou's prescriptions. It is shown
that the results obtained are reduced to the special case of the cylindrical
gravitational waves already available in the literature.Comment: 11 pages, no figure, Late
Numerical modeling of the interstellar medium in galactic disks
We have been developing detailed hydrodynamic models of the global interstellar medium in the hope of understanding the mass and volume occupied by various phases, as well as their structure and kinematics. In our model, the gas is modeled by one fluid while representative Pop 1 stars are modeled by a second fluid. The two fluids are coupled in that the gas forms into stars at a rate given by a Schmidt law while stellar mass loss returns matter into the gas phase (on a time scale of 100 Myr). Also, the stars heat the gas through stellar winds and the gas cools through optically thin radiation. The time behavior of these two fluids is studied in two spatial dimensions with the Eulerian finite difference numerical hydrodynamic code Zen. The two spatial dimensions are along the plane of a disk (x, total length of 2 kpc) and perpendicular to the disk (z, total height of +/- 15 kpc) and a galactic gravitational field in the z direction, typical of that at the solar circle, is imposed upon the simulation; self-gravity and rotation are absent. For the boundary conditions, outflow is permitted at the top and bottom of the grid (z = +/- 15 kpc) while periodic boundary conditions are imposed upon left and right sides of the grid. As initial conditions, we assumed a gaseous distribution like that seen for the H1 by earlier researchers, although the results are insensitive to the initial conditions. We have run simulations in which the heating due to stars, parameterized as a stellar wind velocity, a, is varied from low (a = 150 km/s), to intermediate (a = 300 km/s), to high (a = 600 km/s). Since the intermediate case is roughly equivalent to the Galactic energy injection rate from supernovae, this summary will concentrate on results from this simulation
Guidelines for composite materials research related to general aviation aircraft
Guidelines for research on composite materials directed toward the improvement of all aspects of their applicability for general aviation aircraft were developed from extensive studies of their performance, manufacturability, and cost effectiveness. Specific areas for research and for manufacturing development were identified and evaluated. Inputs developed from visits to manufacturers were used in part to guide these evaluations, particularly in the area of cost effectiveness. Throughout the emphasis was to direct the research toward the requirements of general aviation aircraft, for which relatively low load intensities are encountered, economy of production is a prime requirement, and yet performance still commands a premium. A number of implications regarding further directions for developments in composites to meet these requirements also emerged from the studies. Chief among these is the need for an integrated (computer program) aerodynamic/structures approach to aircraft design
Soft Manifold Dynamics Behind Negative Thermal Expansion
Minimal models are developed to examine the origin of large negative thermal
expansion (NTE) in under-constrained systems. The dynamics of these models
reveals how underconstraint can organize a thermodynamically extensive manifold
of low-energy modes which not only drives NTE but extends across the Brillioun
zone. Mixing of twist and translation in the eigenvectors of these modes, for
which in ZrW2O8 there is evidence from infrared and neutron scattering
measurements, emerges naturally in our model as a signature of the dynamics of
underconstraint.Comment: 5 pages, 3 figure
Charged Condensate and Helium Dwarf Stars
White dwarf stars composed of carbon, oxygen or heavier elements are expected
to crystallize as they cool down below certain temperatures. Yet, simple
arguments suggest that the helium white dwarf cores may not solidify, mostly
because of zero-point oscillations of the helium ions that would dissolve the
crystalline structure. We argue that the interior of the helium dwarfs may
instead form a macroscopic quantum state in which the charged helium-4 nuclei
are in a Bose-Einstein condensate, while the relativistic electrons form a
neutralizing degenerate Fermi liquid. We discuss the electric charge screening,
and the spectrum of this substance, showing that the bosonic long-wavelength
fluctuations exhibit a mass gap. Hence, there is a suppression at low
temperatures of the boson contribution to the specific heat -- the latter being
dominated by the specific heat of the electrons near the Fermi surface. This
state of matter may have observational signatures.Comment: 10 pages; v2: to appear in JCAP, brief comments and section titles
added, typos correcte
Whole-genome sequencing of Klebsiella pneumoniae isolates to track strain progression in a single patient with recurrent urinary tract infection
Klebsiella pneumoniae is an important uropathogen that increasingly harbors broad-spectrum antibiotic resistance determinants. Evidence suggests that some same-strain recurrences in women with frequent urinary tract infections (UTIs) may emanate from a persistent intravesicular reservoir. Our objective was to analyze K. pneumoniae isolates collected over weeks from multiple body sites of a single patient with recurrent UTI in order to track ordered strain progression across body sites, as has been employed across patients in outbreak settings. Whole-genome sequencing of 26 K. pneumoniae isolates was performed utilizing the Illumina platform. PacBio sequencing was used to create a refined reference genome of the original urinary isolate (TOP52). Sequence variation was evaluated by comparing the 26 isolate sequences to the reference genome sequence. Whole-genome sequencing of the K. pneumoniae isolates from six different body sites of this patient with recurrent UTI demonstrated 100% chromosomal sequence identity of the isolates, with only a small P2 plasmid deletion in a minority of isolates. No single nucleotide variants were detected. The complete absence of single-nucleotide variants from 26 K. pneumoniae isolates from multiple body sites collected over weeks from a patient with recurrent UTI suggests that, unlike in an outbreak situation with strains collected from numerous patients, other methods are necessary to discern strain progression within a single host over a relatively short time frame.</p
X-ray Light Curves and Accretion Disk Structure of EX Hydrae
We present X-ray light curves for the cataclysmic variable EX Hydrae obtained
with the Chandra High Energy Transmission Grating Spectrometer and the Extreme
Ultraviolet Explorer Deep Survey photometer. We confirm earlier results on the
shape and amplitude of the binary light curve and discuss a new feature: the
phase of the minimum in the binary light curve, associated with absorption by
the bulge on the accretion disk, increases with wavelength. We discuss several
scenarios that could account for this trend and conclude that, most likely, the
ionization state of the bulge gas is not constant, but rather decreases with
binary phase. We also conclude that photoionization of the bulge by radiation
originating from the white dwarf is not the main source of ionization, but that
it is heated by shocks originating from the interaction between the inflowing
material from the companion and the accretion disk. The findings in this paper
provide a strong test for accretion disk models in close binary systems.Comment: 19 pages, 4 figures, accepted for publication in the Ap
Collision of High Frequency Plane Gravitational and Electromagnetic Waves
We study the head-on collision of linearly polarized, high frequency plane
gravitational waves and their electromagnetic counterparts in the
Einstein-Maxwell theory. The post-collision space-times are obtained by solving
the vacuum Einstein-Maxwell field equations in the geometrical optics
approximation. The head-on collisions of all possible pairs of these systems of
waves is described and the results are then generalised to non-linearly
polarized waves which exhibit the maximum two degrees of freedom of
polarization.Comment: Latex file, 17 pages, accepted for publication in International
Journal of Modern Physics
Energy and momentum of cylindrical gravitational waves. II
Recently Nathan Rosen and the present author obtained the energy and momentum
densities of cylindrical gravitational waves in Einstein's prescription and
found them to be finite and reasonable. In the present paper we calculate the
same in prescriptions of Tolman as well as Landau and Lifshitz and discuss the
results.Comment: 8 pages, LaTex, To appear in Pramana- J. Physic
- …