14,229 research outputs found

    Neutrino Oscillations from String Theory

    Full text link
    We derive the character of neutrino oscillations that results from a model of equivalence principle violation suggested recently by Damour and Polyakov as a plausible consequence of string theory. In this model neutrino oscillations will take place through interaction with a long range scalar field of gravitational origin even if the neutrinos are degenerate in mass. The energy dependence of the oscillation length is identical to that in the conventional mass mixing mechanism. This possibility further highlghts the independence of and need for more exacting direct neutrino mass measurements together with a next generation of neutrinoless double beta decay experiments.Comment: 7 pages LaTE

    Pade Interpolation: Methodology and Application to Quarkonium

    Full text link
    A novel application of the Pade approximation is proposed in which the Pade approximant is used as an interpolation for the small and large coupling behaviors of a physical system, resulting in a prediction of the behavior of the system at intermediate couplings. This method is applied to quarkonium systems and reasonable values for the c and b quark masses are obtained.Comment: RevTeX, 12 pages; 1 figure (Figure1.GIF) included at the end; to appear in the Journal of Mathematical Physic

    Comments on Neutrino Tests of Special Relativity

    Get PDF
    We point out that the assumption of Lorentz noninvariance examined recently by Coleman and Glashow leads to neutrino flavor oscillations which are phenomenologically equivalent to those obtained by assuming the neutrinos violate the principle of equivalence. We then comment on the limits on Lorentz noninvariance which can be derived from solar, atmospheric, and accelerator neutrino experiments.Comment: 5 pages, Revte

    Pyroxenes and olivines in crystalline rocks from ocean of storms

    Get PDF
    Determination of petrology and deformational state of pyroxenes and olivines in lunar rocks returned by Apollo 12 fligh

    Two-way quantum communication channels

    Get PDF
    We consider communication between two parties using a bipartite quantum operation, which constitutes the most general quantum mechanical model of two-party communication. We primarily focus on the simultaneous forward and backward communication of classical messages. For the case in which the two parties share unlimited prior entanglement, we give inner and outer bounds on the achievable rate region that generalize classical results due to Shannon. In particular, using a protocol of Bennett, Harrow, Leung, and Smolin, we give a one-shot expression in terms of the Holevo information for the entanglement-assisted one-way capacity of a two-way quantum channel. As applications, we rederive two known additivity results for one-way channel capacities: the entanglement-assisted capacity of a general one-way channel, and the unassisted capacity of an entanglement-breaking one-way channel.Comment: 21 pages, 3 figure

    A new look at the modified Coulomb potential in a strong magnetic field

    Full text link
    The static Coulomb potential of Quantum Electrodynamics (QED) is calculated in the presence of a strong magnetic field in the lowest Landau level (LLL) approximation using two different methods. First, the vacuum expectation value of the corresponding Wilson loop is calculated perturbatively in two different regimes of dynamical mass mdyn.m_{dyn.}, {\it i.e.}, ∣q∥2∣≪mdyn.2≪∣eB∣|{\mathbf{q}}_{\|}^{2}|\ll m_{dyn.}^{2}\ll |eB| and mdyn.2≪∣q∥2∣≪∣eB∣m_{dyn.}^{2}\ll |\mathbf{q}_{\|}^{2}|\ll|eB|, where q∥\mathbf{q}_{\|} is the longitudinal components of the momentum relative to the external magnetic field BB. The result is then compared with the static potential arising from Born approximation. Both results coincide. Although the arising potentials show different behavior in the aforementioned regimes, a novel dependence on the angle θ\theta between the particle-antiparticle's axis and the direction of the magnetic field is observed. In the regime ∣q∥2∣≪mdyn.2≪∣eB∣|{\mathbf{q}}_{\|}^{2}|\ll m_{dyn.}^{2}\ll |eB|, for strong enough magnetic field and depending on the angle θ\theta, a qualitative change occurs in the Coulomb-like potential; Whereas for θ=0,π\theta=0,\pi the potential is repulsive, it exhibits a minimum for angles θ∈]0,π[\theta\in]0,\pi[.Comment: V1: 26 pages, 8 figures, latex format, V2: Accepted for publication in PRD (2007

    Plasma interactions and surface/material effects

    Get PDF
    A discussion on plasma interactions and surface/material effects is summarized. The key issues in this area were: (1) the lack of data on the material properties of common spacecraft surface materials; (2) lack of understanding of the contamination and decontamination processes; and (3) insufficient analytical tools to model synergistic phenomena related to plasma interactions. Without an adequate database of material properties, accurate system performance predictions cannot be made. The interdisciplinary nature of the surface-plasma interactions area makes it difficult to plan and maintain a coherent theoretical and experimental program. The shuttle glow phenomenon is an excellent example of an unanticipated, complex interaction involving synergism between surface and plasma effects. Building an adequate technology base for understanding and predicting surface-plasma interactions will require the coordinated efforts of engineers, chemists, and physicists. An interdisciplinary R and D program should be organized to deal with similar problems that the space systems of the 21st century may encounter
    • …
    corecore