185 research outputs found
MOCVD-Fabricated TiO2 Thin Films: Influence of Growth Conditions on Fibroblast Cells Culture
TiO2 thin films with various morphologies were grown on Ti substrates by the LP-MOCVD technique (Low Pressure Chemical Vapour Deposition from Metal-Organic precursor), with titanium tetra-iso-propoxide as a precursor. All the films were prepared in the same conditions except the deposition time. They were characterized by X-ray diffraction, scanning electron microscopy, optical 15 interferometry, water contact angle measurements. MOCVD-fabricated TiO2 thin films are known to be adapted to cell culture for implant requirements. Human gingival fibroblasts were cultured on the various TiO2 deposits. Differences in cell viability (MTT tests) and cell spreading (qualitative assessment) were observed and related to film roughness, wettability and allotropic composition
Magnetic Properties of Quantum Ferrimagnetic Spin Chains
Magnetic susceptibilities of spin- ferrimagnetic Heisenberg chains are
numerically investigated. It is argued how the ferromagnetic and
antiferromagnetic features of quantum ferrimagnets are exhibited as functions
of . Spin- ferrimagnetic chains behave like combinations of
spin- ferromagnetic and spin- antiferromagnetic chains provided
.Comment: 4 pages, 7 PS figures, to appear in Phys. Rev. B: Rapid Commu
Low-Temperature Properties of Quasi-One-Dimensional Molecule-Based Ferromagnets
Quantum and thermal behaviors of low-dimensional mixed-spin systems are
investigated with particular emphasis on the design of molecule-based
ferromagnets. One can obtain a molecular ferromagnet by assembling molecular
bricks so as to construct a low-dimensional system with a magnetic ground state
and then coupling the chains or the layers again in a ferromagnetic fashion.
Two of thus-constructed quasi-one-dimensional bimetallic compounds are
qualitatively viewed within the spin-wave treatment, one of which successfully
grows into a bulk magnet, while the other of which ends in a singlet ground
state. Then, concentrating on the ferrimagnetic arrangement on a two-leg ladder
which is well indicative of general coupled-chain ferrimagnets, we develop the
spin-wave theory and fully reveal its low-energy structure. We inquire further
into the ferromagnetic aspect of the ferrimagnetic ladder numerically
calculating the sublattice magnetization and the magnetic susceptibility. There
exists a moderate coupling strength between the chains in order to obtain the
most ferromagnetic ferrimagnet.Comment: 10 pages, 7 figures embedded, to be published in J. Phys. Soc. Jpn.
Vol.70, No.5 (2001
Existence of the magnetization plateau in a class of exactly solvable Ising-Heisenberg chains
The mapping transformation technique is applied to obtain exact results for
the spin-1/2 and spin-S (S=1/2,1) Ising-Heisenberg antiferromagnetic chain in
the presence of an external magnetic field. Within this scheme, a field-induced
first-order metamagnetic transition resulting in multiplateau magnetization
curves, is investigated in detail. It is found that the scenario of the plateau
formation depends fundamentally on the ratio between Ising and Heisenbrg
interaction constants, as well as on the anisotropy strength of the XXZ
Heisenberg interaction.Comment: 16 pages, 10 figures, submitted to J. Phys: Condens. Matte
The SwissLipids knowledgebase for lipid biology.
MOTIVATION: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it.
RESULTS: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology-SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge.
AVAILABILITY: SwissLipids is freely available at http://www.swisslipids.org/.
CONTACT: [email protected]
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online
Collisional kinetics of non-uniform electric field, low-pressure, direct-current discharges in H
A model of the collisional kinetics of energetic hydrogen atoms, molecules,
and ions in pure H discharges is used to predict H emission
profiles and spatial distributions of emission from the cathode regions of
low-pressure, weakly-ionized discharges for comparison with a wide variety of
experiments. Positive and negative ion energy distributions are also predicted.
The model developed for spatially uniform electric fields and current densities
less than A/m is extended to non-uniform electric fields, current
densities of A/m, and electric field to gas density ratios MTd at 0.002 to 5 Torr pressure. (1 Td = V m and 1 Torr =
133 Pa) The observed far-wing Doppler broadening and spatial distribution of
the H emission is consistent with reactions among H, H,
H, and H ions, fast H atoms, and fast H molecules, and with
reflection, excitation, and attachment to fast H atoms at surfaces. The
H excitation and H formation occur principally by collisions of
fast H, fast H, and H with H. Simplifications include using a
one-dimensional geometry, a multi-beam transport model, and the average
cathode-fall electric field. The H emission is linear with current
density over eight orders of magnitude. The calculated ion energy distributions
agree satisfactorily with experiment for H and H, but are only in
qualitative agreement for H and H. The experiments successfully modeled
range from short-gap, parallel-plane glow discharges to beam-like,
electrostatic-confinement discharges.Comment: Submitted to Plasmas Sources Science and Technology 8/18/201
Analytical Bethe Ansatz for closed and open gl(n)-spin chains in any representation
We present an "algebraic treatment" of the analytical Bethe Ansatz. For this
purpose, we introduce abstract monodromy and transfer matrices which provide an
algebraic framework for the analytical Bethe Ansatz. It allows us to deal with
a generic gl(n)-spin chain possessing on each site an arbitrary
gl(n)-representation. For open spin chains, we use the classification of the
reflection matrices to treat all the diagonal boundary cases. As a result, we
obtain the Bethe equations in their full generality for closed and open spin
chains. The classifications of finite dimensional irreducible representations
for the Yangian (closed spin chains) and for the reflection algebras (open spin
chains) are directly linked to the calculation of the transfer matrix
eigenvalues. As examples, we recover the usual closed and open spin chains, we
treat the alternating spin chains and the closed spin chain with impurity
The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel
This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO2 by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5104 min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO2 exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method
Virosaurus A Reference to Explore and Capture Virus Genetic Diversity.
The huge genetic diversity of circulating viruses is a challenge for diagnostic assays for emerging or rare viral diseases. High-throughput technology offers a new opportunity to explore the global virome of patients without preconception about the culpable pathogens. It requires a solid reference dataset to be accurate. Virosaurus has been designed to offer a non-biased, automatized and annotated database for clinical metagenomics studies and diagnosis. Raw viral sequences have been extracted from GenBank, and cleaned up to remove potentially erroneous sequences. Complete sequences have been identified for all genera infecting vertebrates, plants and other eukaryotes (insect, fungus, etc.). To facilitate the analysis of clinically relevant viruses, we have annotated all sequences with official and common virus names, acronym, genotypes, and genomic features (linear, circular, DNA, RNA, etc.). Sequences have been clustered to remove redundancy at 90% or 98% identity. The analysis of clustering results reveals the state of the virus genetic landscape knowledge. Because herpes and poxviruses were under-represented in complete genomes considering their potential diversity in nature, we used genes instead of complete genomes for those in Virosaurus
The correct connectivity of the DG-CA3 circuits involved in declarative memory 3 processes depends on Vangl2-dependent planar cell polarity signaling
- …
