27 research outputs found

    Label-Free Quantification of Nanoencapsulated Piperonyl Esters in Cosmetic Hydrogels Using Raman Spectroscopy

    Get PDF
    Raman spectroscopy is a well-established technique for the molecular characterisation of samples and does not require extensive pre-analytical processing for complex cosmetic products. As an illustration of its potential, this study investigates the quantitative performance of Raman spectroscopy coupled with partial least squares regression (PLSR) for the analysis of Alginate nanoencapsulated Piperonyl Esters (ANC-PE) incorporated into a hydrogel. A total of 96 ANC-PE samples covering a 0.4% w/w–8.3% w/w PE concentration range have been prepared and analysed. Despite the complex formulation of the sample, the spectral features of the PE can be detected and used to quantify the concentrations. Using a leave-K-out cross-validation approach, samples were divided into a training set (n = 64) and a test set, samples that were previously unknown to the PLSR model (n = 32). The root mean square error of cross-validation (RMSECV) and prediction (RMSEP) was evaluated to be 0.142% (w/w PE) and 0.148% (w/w PE), respectively. The accuracy of the prediction model was further evaluated by the percent relative error calculated from the predicted concentration compared to the true value, yielding values of 3.58% for the training set and 3.67% for the test set. The outcome of the analysis demonstrated the analytical power of Raman to obtain label-free, non-destructive quantification of the active cosmetic ingredient, presently PE, in complex formulations, holding promise for future analytical quality control (AQC) applications in the cosmetics industry with rapid and consumable-free analysis

    Conformal mapping for cavity inverse problem: an explicit reconstruction formula

    Get PDF
    International audienceIn this paper, we address a classical case of the Calder\'on (or conductivity) inverse problem in dimension two. We aim to recover the location and the shape of a single cavity ω\omega (with boundary γ\gamma) contained in a domain Ω\Omega (with boundary Γ\Gamma) from the knowledge of the Dirichlet-to-Neumann (DtN) map Λγ:f⟼∂nuf∣Γ\Lambda_\gamma: f \longmapsto \partial_n u^f|_{\Gamma}, where ufu^f is harmonic in Ω∖ω‾\Omega\setminus\overline{\omega}, uf∣Γ=fu^f|_{\Gamma}=f and uf∣γ=cfu^f|_{\gamma}=c^f, cfc^f being the constant such that ∫γ∂nuf ds=0\int_{\gamma}\partial_n u^f\,{\rm d}s=0. We obtain an explicit formula for the complex coefficients ama_m arising in the expression of the Riemann map z⟼a1z+a0+∑m⩽−1amzmz\longmapsto a_1 z + a_0 + \sum_{m\leqslant -1} a_m z^{m} that conformally maps the exterior of the unit disk onto the exterior of ω\omega. This formula is derived by using two ingredients: a new factorization result of the DtN map and the so-called generalized P\'olia-Szeg\"o tensors (GPST) of the cavity. As a byproduct of our analysis, we also prove the analytic dependence of the coefficients ama_m with respect to the DtN. Numerical results are provided to illustrate the efficiency and simplicity of the method

    Bending continuous structures with SMAs: a novel robotic fish design

    Get PDF
    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators’ control in terms of actuation speed and position accuracy is also addressed

    An Efficient Targeted Drug Delivery through Apotransferrin Loaded Nanoparticles

    Get PDF
    BACKGROUND: Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. METHODOLOGY/PRINCIPAL FINDINGS: Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano) have diameters of 25-50 etam, which increase to 60-80 etam upon direct loading of drug (direct-nano), and showed further increase in dimension (75-95 etam) in conjugated nanoparticles (conj-nano). The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a) localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus) (b) pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c) the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in regression of hepatocellular carcinoma with negligible toxicity to kidney and liver. CONCLUSIONS: The present study thus demonstrates that the direct-nano is highly efficacious in delivery of drug in a target specific manner with lower toxicity to heart, liver and kidney

    Monitoring dermal penetration and permeation kinetics of topical products; the role of Raman microspectroscopy

    Get PDF
    International audienceThe study of human skin represents an important area of research and development in dermatology, toxicology, pharmacology and cosmetology, in order to assess the effects of exogenous agents, their interaction, their absorption mechanism, and/or their toxicity towards the different cutaneous structures. The processes can be parameterised by mathematical models of diffusion, of varying degrees of complexity, and are commonly measured by Franz cell diffusion, in vitro, and tape stripping, in vitro or in vivo, techniques which are recognised by regulatory bodies for commercialisation of dermally applied products. These techniques do not directly provide chemically specific measurement of the penetration and/or permeation of formulations in situ, however.Raman microspectroscopy provides a non-destructive, non-invasive and chemically specific methodology for in vitro, and in vivo investigations, in-situ, and can provide a powerful alternative to the current gold standard methods approved by regulatory bodies.This review provides an analysis of the current state of art of the field of monitoring dermal penetration and permeation kinetics of topical products, in vitro and in vivo, as well as the regulatory requirements of international guidelines governing them. It furthermore outlines developments in the analysis of skin using Raman microspectroscopy, towards the most recent demonstrations of quantitative monitoring of the penetration and permeation kinetics of topical products in situ, for in vitro and in vivo applications, before discussing the challenges and future perspectives of the field
    corecore