13 research outputs found
Event-by-event correlations between () hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at from STAR
Global polarizations () of () hyperons have been
observed in non-central heavy-ion collisions. The strong magnetic field
primarily created by the spectator protons in such collisions would split the
and global polarizations (). Additionally, quantum chromodynamics (QCD) predicts
topological charge fluctuations in vacuum, resulting in a chirality imbalance
or parity violation in a local domain. This would give rise to an imbalance
() between left- and right-handed
() as well as a charge separation along the magnetic field,
referred to as the chiral magnetic effect (CME). This charge separation can be
characterized by the parity-even azimuthal correlator () and
parity-odd azimuthal harmonic observable (). Measurements of
, , and have not led to definitive
conclusions concerning the CME or the magnetic field, and has not
been measured previously. Correlations among these observables may reveal new
insights. This paper reports measurements of correlation between and
, which is sensitive to chirality fluctuations, and correlation
between and sensitive to magnetic field in Au+Au
collisions at 27 GeV. For both measurements, no correlations have been observed
beyond statistical fluctuations.Comment: 10 pages, 10 figures; paper from the STAR Collaboratio
Observation of the electromagnetic field effect via charge-dependent directed flow in heavy-ion collisions at the Relativistic Heavy Ion Collider
The deconfined quark-gluon plasma (QGP) created in relativistic heavy-ion
collisions enables the exploration of the fundamental properties of matter
under extreme conditions. Non-central collisions can produce strong magnetic
fields on the order of Gauss, which offers a probe into the
electrical conductivity of the QGP. In particular, quarks and anti-quarks carry
opposite charges and receive contrary electromagnetic forces that alter their
momenta. This phenomenon can be manifested in the collective motion of
final-state particles, specifically in the rapidity-odd directed flow, denoted
as . Here we present the charge-dependent measurements of
near midrapidities for , , and
in Au+Au and isobar (Ru+Ru and
Zr+Zr) collisions at 200 GeV, and
in Au+Au collisions at 27 GeV, recorded by the STAR detector at the
Relativistic Heavy Ion Collider. The combined dependence of the signal on
collision system, particle species, and collision centrality can be
qualitatively and semi-quantitatively understood as several effects on
constituent quarks. While the results in central events can be explained by the
and quarks transported from initial-state nuclei, those in peripheral
events reveal the impacts of the electromagnetic field on the QGP. Our data put
valuable constraints on the electrical conductivity of the QGP in theoretical
calculations
Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions at = 200 GeV
The polarization of and hyperons along the beam
direction has been measured relative to the second and third harmonic event
planes in isobar Ru+Ru and Zr+Zr collisions at = 200 GeV. This
is the first experimental evidence of the hyperon polarization by the
triangular flow originating from the initial density fluctuations. The
amplitudes of the sine modulation for the second and third harmonic results are
comparable in magnitude, increase from central to peripheral collisions, and
show a mild dependence. The azimuthal angle dependence of the
polarization follows the vorticity pattern expected due to elliptic and
triangular anisotropic flow, and qualitatively disagree with most hydrodynamic
model calculations based on thermal vorticity and shear induced contributions.
The model results based on one of existing implementations of the shear
contribution lead to a correct azimuthal angle dependence, but predict
centrality and dependence that still disagree with experimental
measurements. Thus, our results provide stringent constraints on the thermal
vorticity and shear-induced contributions to hyperon polarization. Comparison
to previous measurements at RHIC and the LHC for the second-order harmonic
results shows little dependence on the collision system size and collision
energy.Comment: 6 pages, 5 figures, Published in Physical Review Letter
Recent developments in track reconstruction and hadron identification at MPD
A Monte Carlo simulation of real detector effects with as many details as possible has been carried out instead of a simplified Geant point smearing approach during the study of the detector performance. Some results of realistic simulation of the MPD TPC (Time Projection Chamber) including digitization in central Au+Au collisions have been obtained. Particle identification (PID) has been tuned to account for modifications in the track reconstruction. Some results on hadron identification in the TPC and TOF (Time Of Flight) detectors with realistically simulated response have been also obtained
Prospects for the study of the strangeness production within the PHQMD model
Strangeness and hypernuclei production in heavy-ion collisions is presently under active experimental and theoretical investigation and is of particular interest for the experiments at the new acceleration complex NICA (Nuclotron-based Ion Collider fAcility) which is under construction at the Joint Institute for Nuclear Research (Dubna, Russia). We study the production of (hyper)nuclei in the NICA energy range using a novel n-body dynamical transport approach called Parton-Hadron-Quantum-Molecular Dynamics (PHQMD)
A New Review of Excitation Functions of Hadron Production in pp Collisions in the NICA Energy Range
Data on hadron multiplicities from inelastic proton-proton interactions in
the energy range of the NICA collider have been compiled. The compilation
includes recent results from the NA61/SHINE and NA49 experiments at the CERN
SPS accelerator. New parameterizations for excitation functions of mean
multiplicities \left, \left,
\left, \left, \left,
\left are obtained in the region of collision energies
GeV. The energy dependence of the particle yields, as well
as variation of rapidity and transverse momentum distributions are discussed. A
standalone algorithm for hadron phase space generation in pp collisions is
suggested and compared to model predictions using an example of the PHQMD
generator.Comment: Submitted to PEPAN Letter