11 research outputs found

    Visualization of the birth of an optical vortex using diffraction from a triangular aperture

    Get PDF
    Funding: EPSRC, UKThe study and application of optical vortices have gained significant prominence over the last two decades. An interesting challenge remains the determination of the azimuthal index (topological charge) l of an optical vortex beam for a range of applications. We explore the diffraction of such beams from a triangular aperture and observe that the form of the resultant diffraction pattern is dependent upon both the magnitude and sign of the azimuthal index and this is valid for both monochromatic and broadband light fields. For the first time we demonstrate that this behavior is related not only to the azimuthal index but crucially the Gouy phase component of the incident beam. In particular, we explore the far field diffraction pattern for incident fields incident upon a triangular aperture possessing non-integer values of the azimuthal index l. Such fields have a complex vortex structure. We are able to infer the birth of a vortex which occurs at half-integer values of l and explore its evolution by observations of the diffraction pattern. These results demonstrate the extended versatility of a triangular aperture for the study of optical vortices. (c) 2011 Optical Society of AmericaPublisher PDFPeer reviewe

    Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination

    Get PDF
    When an azobenzene-containing polymer film is exposed to a non-uniform illumination, a light-induced mass migration process may be induced, leading to the formation of relief patterns on the polymer free surface. Despite a research effort of many years and several proposed models many aspects of this phenomenon remain not well understood. Here we report the appearance of spiral-shaped relief patterns on the polymer under the illumination of focused Laguerre-Gauss beams, having helical wavefront and an optical vortex at their axis. The induced spiral reliefs are sensitive to the vortex topological charge and to the wavefront handedness. These findings are unexpected, because the "doughnut"-shaped intensity profile of Laguerre- Gauss beams contains no information about the wavefront handedness. We propose a model that explains the main features of this phenomenon from the surface-mediated interference of the longitudinal and the transverse components of the optical field. These results may find applications in optical micro- and nanolithography and optical-field.Comment: Open Access at Journal Reference homepag

    Modal characterization using principal component analysis : application to Bessel, higher-order Gaussian beams and their superposition

    Get PDF
    This work was funded by the EPSRC.The modal characterization of various families of beams is a topic of current interest. We recently reported a new method for the simultaneous determination of both the azimuthal and radial mode indices for light fields possessing orbital angular momentum. The method is based upon probing the far-field diffraction pattern from a random aperture and using the recorded data as a 'training set'. We then transform the observed data into uncorrelated variables using the principal component analysis (PCA) algorithm. Here, we show the generic nature of this approach for the simultaneous determination of the modal parameters of Hermite-Gaussian and Bessel beams. This reinforces the widespread applicability of this method for applications including information processing, spectroscopy and manipulation. Additionally, preliminary results demonstrate reliable decomposition of superpositions of Laguerre-Gaussians, yielding the intensities and relative phases of each constituent mode. Thus, this approach represents a powerful method for characterizing the optical multi-dimensional Hilbert space.Publisher PDFPeer reviewe

    ZnO nanorod micropatterning via laser-induced forward transfer

    No full text

    Visualization of the birth of an optical vortex using diffraction from a triangular aperture

    No full text
    The study and application of optical vortices have gained significant prominence over the last two decades. An interesting challenge remains the determination of the azimuthal index (topological charge) l of an optical vortex beam for a range of applications. We explore the diffraction of such beams from a triangular aperture and observe that the form of the resultant diffraction pattern is dependent upon both the magnitude and sign of the azimuthal index and this is valid for both monochromatic and broadband light fields. For the first time we demonstrate that this behavior is related not only to the azimuthal index but crucially the Gouy phase component of the incident beam. In particular, we explore the far field diffraction pattern for incident fields incident upon a triangular aperture possessing non-integer values of the azimuthal index l. Such fields have a complex vortex structure. We are able to infer the birth of a vortex which occurs at half-integer values of l and explore its evolution by observations of the diffraction pattern. These results demonstrate the extended versatility of a triangular aperture for the study of optical vortices. (c) 2011 Optical Society of America</p

    Synthesis and application of triphenylamine-based aldehydes as photo-initiators for multi-photon lithography

    No full text
    International audiencePhotopolymerization of (meth)acrylate-based formulations has become a widespread method for industry due to the high energy efficiency and low curing times of this technology. Various products from simple coatings to more complex applications such as additive manufacturing technologies are based on this versatile method. Common industrial radical photoinitiators are generally based on aromatic ketones. Benzaldehyde is an organic compound consisting of a benzene ring with a formyl substituent. It is the simplest aromatic aldehyde and one of the most industrially useful; for instance in the preparation of various aniline dyes, perfumes, flavorings, and pharmaceutics. Parallel to this, triphenylamines are extensively used for the design of dyes used for solar energy conversion. In this work, three triphenylamine derivatives bearing formyl groups are as a new substance class of multi-photon lithography photoinitiators. Besides their efficient formulations, they show high biocompatibilty by investigating the adhesion, viability and proliferation of dental stem cells on photopolymerized thin films
    corecore